Name: _____

BCI SCIENCE

Worksheet:

SCH 4CI

Stoichiometry #1

1. Calculate the mass of acetic acid, CH₃COOH₍₁₎, that is produced by the reaction of 6000 g of carbon monoxide, CO_(g), with sufficient methanol, CH₃OH_(l). 130000g

 $_CH_3OH_{(l)} + _CO_{(g)} \rightarrow _CH_3COOH_{(l)}$

2. Calculate the mass of silver nitrate, $AgNO_{3(aq)}$, that must react with solid copper to provide 475 kg of copper nitrate, $Cu(NO_3)_{2(aq)}$.

 $\underline{Cu}_{(s)} + \underline{AgNO}_{3(aq)} \rightarrow \underline{Ag}_{(s)} + \underline{Cu}(NO_3)_{2(aq)}$ 860kg

3. What mass of oxygen, $O_{2(g)}$, is produced if 22.7 mol of carbon dioxide is consumed in a controlled photosynthesis reaction?

> $\underline{CO}_{2(g)} + \underline{H}_{2}O_{(l)} \rightarrow \underline{C}_{6}H_{12}O_{6(s)} + \underline{O}_{2(g)}$ 726g

4. What amount of moles of sodium phosphate, $Na_3PO_{4(aq)}$, is produced if 14.7 g of sodium hydroxide reacts with phosphoric acid, H₃PO_{4(aq)}? $\underline{NaOH}_{(aq)} + \underline{H_3PO}_{4(aq)} \rightarrow \underline{Na_3PO}_{4(aq)} + \underline{H_2O}_{(l)}$ 0.123mol

Date: