Factors that Affect the Rate of Dissolving and Solubility

Dissolving

One very important property of a solution is the rate of **dissolving**, or how quickly a solute dissolves in a solvent. When dissolving occurs, there in **NO CHEMICAL REACTION** involved. Therefore, the solute and solvent can be separated using **physical** properties such as **boiling points** or **filtration**.

The rate at which a solute dissolves depends on a number of factors:

i) Temperature

Increasing temperature increases the **kinetic energy** (energy of motion) of the molecules, which increases the frequencies of **collisions** and the rate of dissolving.

ii) Agitation

Stirring/shaking brings **fresh solvent** into contact with **undissolved solute**, increasing **collisions** and the rate of dissolving.

iii) Particle Size

Crushing solute into smaller pieces increases the **surface area** that is in contact with **solvent**, thus increasing the rate of dissolving.

The Dissolving Process

Whether or not a solute dissolves and to what extent depends on the forces of attraction between:

- Solute particles
- Solvent particles
- Solute and solvent particles

When the forces of attraction between **different** particles in a mixture are **stronger** than the forces of attraction between **like** particles in the mixture, a solution forms. The strength of each attraction influences the **solubility**, or the amount of solute that dissolves in a solvent.

The dissolving process can be broken down into three key steps:

1. The forces holding the solute together must be broken (requires energy)

Ionic compounds - the forces holding the ions together must be broken

Covalent molecules - the forces holding molecules together must be broken

- 2. The intermolecular forces (between particles) holding the solvent together must be broken (requires energy)
- 3. Solute and solvent **attract** (**release energy**) and the molecules of solute fill in the spaces between solvent molecules.
- **Note:** Dissolving is more likely to occur if the energy required (steps 1 and 2) is less than the energy released (step 3).

Polar and Non-Polar Substances

In general, we can follow the rule of "like dissolves like" when trying to predict the solubility of different particles. **Ionic** solutes and **polar covalent** solutes dissolve in **polar solvents** and **non-polar solutes** dissolve in **non-polar solvents**.

Remember, you can use the difference in electronegativities (ΔEN) to predict if a compound is ionic, polar or non-polar.

There are a few possible forces that act between particles, which helps to explain the "like dissolves like" trend:

Dipole-Dipole Attractions - the attraction between the opposite partial charges on two different polar molecules.		
Ion-Dipole Attractions -	the attractive forces between an ion and a polar molecule. Ions posses a full charge and are therefore attracted to the partial charge on the polar molecules.	

When ions are present in an **aqueous** solution, each ion is **hydrated**. This means that water molecules surround the ion. Hydrated ions can conduct electricity and are referred to as **electrolytes**.

Solubility

Solubility describes the **amount** of **solute** that can be dissolved in a given **amount** of **solvent** under given conditions.

A solute is described as **soluble** in a particular solvent if its solubility is **greater** than **1 g per 100 mL**.

A solute is described as **insoluble** in a particular solvent if its solubility is **less** than **0.1 g per 100 mL**.

Substances with solubility between these limits are called **slightly soluble**.

Factors affecting solubility include:

i) Molecular Size

Small molecules tend to be more soluble than large ones.

ii) Temperature

Affects the solubility of gases and solids in liquids. For gases in liquids: as temp \uparrow solubility \downarrow For solids in liquids: as temp \uparrow solubility \uparrow

A solubility curve (graph) describes how much solute can be dissolved in a given solvent at a certain temperature.

iii) Pressure

Affects the solubility of gases in liquids. As pressure \uparrow solubility \uparrow

Concentration of Solutions

Concentration is defined as the amount of **solute** per quantity of **solvent**.

The concentration of a solution can be calculated. The approach for each calculation varies, depending on the **type** of solution.

1. Calculation as Mass/Volume (m/v) Percent

Gives the mass of solute dissolved in a volume of solution, expressed as a percent.

Examples:

2.00 mL of distilled water is added to 4.00 g of a powdered drug. The final volume of the solution is 3.00 mL. Calculate the percent m/v and then express the drug concentration in g/100 mL.

V m/V % = m solute x 100 V solution 3: the $= \frac{4.00 \text{ g}}{3.00 \text{ mL}} \times 100 \text{ solution is}$ $= \frac{4.00 \text{ g}}{3.00 \text{ mL}} \times 100 \text{ solution is}$ $= \frac{3.00 \text{ mL}}{133\%} \times 100 \text{ mV.g}$ $= \frac{133\%}{100 \text{ mL}} \times 100 \text{ mV.g}$ What mass of a drug is required to make a 2.0 L solution if the groups of drug. recommended concentration is 1.7%? $\sqrt{1} m solute = (m/v %)(v solution)$

Joo 34g of the drug is required

2. Calculation as Mass/Mass (m/m) Percent

Gives the mass of solute divided by the mass of solution, expressed as a percent.

Example:

An aqueous solution of calcium chloride has a mass of 23.47 g. The solvent was evaporated and the residue has a mass of 4.58 g. Calculate the m/m % of calcium chloride in the solution. How many grams of calcium chloride would be present in a 100 g sample?

Gives the volume of solute divided by the volume of solution, expressed as a percent.

Example:

Rubbing alcohol is sold as a 70% (v/v) solution. What volume of alcohol is used to make 500 mL of rubbing alcohol?

% (vsolution) 1Usolute =

4. Parts per Million (ppm) and Parts per Billion (ppb)

Describes the concentration of very small quantities. Usually expressed in terms of mass/mass relationships.

$$ppm = \frac{M_{solut(g)}}{M_{solution(g)}} \times 10^{6}$$

$$ppb = \frac{M_{solute(g)}}{M_{solution(g)}} \times 10^{9}$$

$$m_{solution(g)} \times 10^{9}$$

Note: Your final answer does not refer to the number of particles per million or billion, but rather the mass of solute compared to the mass of solution.

Example:

A shipment of oranges is returned if it contains more than 25 ppb of mould. A company received 20 000 kg of oranges. What is the maximum mass of mould allowed before the shipment should be sent back?

$$m_{solute} = (ppb)(m_{solution}) = (25)(20000000) i 09 i 0.5 g o 0.5 g of mould would be present.$$

Molar Concentration

Molarity (C) is the number of **moles** of **solute** dissolved per **litre** of **solvent**.

The equation we use to calculate molar concentration is:

Where, C = molarity (mol/L or M) n = amount of solute in moles V = volume of solution in Litres

Examples:

What is the molar concentration of 1.20 g of NaNO $_3$ in 80.0 mL of solution?

70.014mol How many grams of potassium hydroxide will be required to prepare 650 mL of 0.430 M solution? n = CV = (0.430)(0.650) = (0.2795)(56,105) = (0.2795)(56,105) = 0.2795 mol = 15.68 g = 15.68 g = 15.68 g

Preparing Solutions and Dilutions

A standard (stock) solution is a solution with known concentration.

There are 2 ways to prepare a solution:

- i. Dissolve a desired amount of solute in a set amount of solvent
- ii. Dilute a standard solution

A useful tool in preparing solutions is a **volumetric flask** \rightarrow a pear-shaped glass with a flat bottom and a long neck. Volumetric flasks provide are very accurate tools for measuring volumes.

To prepare a solution you should perform the following steps:

- 1. Determine the mass (g) of solute required to make the desired volume (L) and concentration (mol/L) of solution. (A) n = CV (B) M = nM
 - 2. Measure out and dissolve the solute in approximately ¹/₂ the total volume of solvent.
 - Raise the volume of solution to the desired total volume by adding more solvent.

Diluting is a process that makes a solution that is less concentrated. This can be done by:

diluted solution

- i. Adding more solvent (more common)
- ii. Removing solute

Dilution Calculations:

Step 1: Find the number of moles you need n = 0Step 2: Find the volume of stock solution you need $N = \frac{1}{2}$ Step 3: Top up with distilled water

VH20=Vsolution-Vstock

Example #1

How do you make a 1.50 L solutions of NaCl with a concentration of 6.00 M from a stock solution with a concentration of 15.0 M?

n C Alternatively we can perform dilution calculations using the following equation: 0,91 of Where, C_1 = Molarity of stock solution V_1 = Volume of stock solution C_2 = Molarity of "new" solution V_2 = Volume of "new" solution Lets try this equation to solve the previous example!!! Example #2

If 85.0 mL of 0.950 M sodium sulfate solution was used to prepare 200 mL of a dilute sodium sulfate solution, what is the new concentration made?

<u>Reactions in an Aqueous Solution-</u> <u>Ionic Equations</u>

When an ionic compound is placed in water, most will **dissolve**, which means they are **soluble** in water. Some ionic compounds will remain as a **solid** and are **insoluble**.

If an ionic compound dissolves in water, it means that the compound is temporarily splitting apart into its ions. This process is referred to as an ionic compound **dissociating**. This is NOT a **chemical reaction** and the ionic compound will readily **re-crystallize** when removed from the water source.

Double displacement reactions occur in water, and are a direct result of ionic compounds dissociating into their ions. Recall that a double displacement reaction will only occur if **water**, **gas** or a **precipitate** forms.

We can show the step-by-step process of a double displacement reaction by writing out an **ionic equation**. There are several different components to an ionic equation.

Spectator Ions

Term		Definition	
Total Ionic	Equation	that illustrates all soluble ionic compounds in their ionic	
Equation	form	ag) -> break into johs	
Net Ionic	Equation	that depicts only the ions that are involved in a chemical	
Equation	reaction	ions that make (s)	
Spectator	An ion th	at is present during a chemical reaction but does not	
Ion	participa	te in the reaction.	_ 、
Example #1 N_{q}^{+} U_{q}^{-} U_{q}			
Word Equat	ion	Silver nitrate reacts with sodium chloride	
Balanced Eq	yation	Ag NO3(ag) + Nacl(ag) -> Ag(1+	NnNDz
Total Ionic	Equation	$A_{3}^{+}(1_{9}) + N_{3}^{-}(1_{1}) + N_{3}^{+}(1_{1}) + C_{1}^{-}(1_{1}) + A_{3}^{-}(1_{1})$	(ng)
Net Ionic E	quation	Agtag + (1) > D-CI	

	$(\overline{z}, \overline{z}, \overline{z})$
Example #2	$(L \cup)/(aq) + (L D) (aq)$
Word Equation	Calcium bromide reacts with lithium chlorate
Balanced Equation	CaB12(19)+221003(19)-> (a(1))+211
Total Ionic Equation	+2 +2Brian +2L; (1)+2Cloz(1)-> (a(10))
Net Ionic Equation	$Ca(ar) + 2Clor(ar) \rightarrow (a(Clor)), (s)$
Spectator Ions	Briag Li (ag)

Precipitate reactions can be used to generate a precipitation profile for known ions, which can be used to identify ions in solution.

	CO3 ⁻²	OH-1	SO4 ⁻²
Ca ⁺²			
Ba ⁺²			
Unknown	ppt	ppt	ppt

The unknown precipitation profile matches that of _

Flow charts can also be used to illustrate what ions may be added to a solution containing many ions to allow for individual separation of ions by precipitation.

When attempting to separate ions from a solution a piece of lab equipment called a **centrifuge** can be used. A centrifuge **spins** at very high speeds to separate different particles from each other based on their **densities**.

The part of the solution that does not settle to the bottom of the centrifuge is called the **supernatant**.

Solution Stoichiometry

Recall that stoichiometry involves calculating the amounts of reactants and products in chemical reactions using a balanced chemical equation. Previously you learned how to calculate the amount of atoms, particles or mass of a compound using the stoichiometry strategies. You can apply these same skills when approaching calculations involving solutions, with the addition of a few additional steps.

Example #1

Calculate the concentration of calcium chloride in a solution made by mixing 150 mL of a 0.200 M calcium hydroxide solution with 100 mL of a 0.500 M hydrochloric acid solution.

V = 0.156L V = 0.156L V = 0.200M V = 0.00L V = 0.100L C = 0.200M C = 0.500M
V=0.156L V=0.100L C=!
C = 0.200 M C = 0.500 M
$\int \frac{1}{2} $
(=(0.200)(0.15) $(=(0.500)(0.100)$
13=0.03 mol 14=0.05 mol
Imal Caroth = Imol Caliz 2mil HCl = Imol Caliz
$\int \frac{1}{100} \int $
0.03 mol (all (1) = 0.075 mol)
(-n)
$V_q = V$
ach be (ach is oil M
= 0.025 ms
0.250L
$V_{q} C = \frac{n}{V}$ = $\frac{0.025m_{sl}}{0.250L}$ $V_{ll} [acl_{2}] : s 0.1M$ $V_{l} = \frac{0.025m_{sl}}{0.250L}$

Example #2

Suppose you want to remove the barium ions from 120 mL of 0.050 00 M aqueous barium nitrate solution. What is the minimum mass of sodium carbonate that you should add?

Strong and Weak Acids and Bases

Strong acid - an acid that dissociates completely into ions in water.

Example: $HCl_{(aq)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + Cl^-_{(aq)}$

When hydrogen chloride molecules enter an aqueous solution, 100% of the hydrogen chloride molecules dissociate. As a result the solution contains the same percent of H+ ions (in the form of H_3O^+) and Cl ions: 100%

Weak acid - an acid that dissociates very slightly in a water solution.

```
Example: CH_3COOH_{(aq)} + H_2O_{(l)} \Leftrightarrow H_3O^+_{(aq)} + CH_3COO^-_{(aq)}
```

On average, only about 1% of the acetic acid molecules dissociate at any given moment.

Notice that the arrow used in the dissociation of a weak acid points in both directions. This indicates that the reaction is *reversible*. The products of the reaction will also react to produce the original reactants.

Term	Definition	Example
Monoprotic acid	Contains only a single hydrogen ion that can dissociate	HCI
Diprotic acid	Contains two hydrogen ions that dissociate to form two anions	H ₂ SO ₄
Triprotic acid	Contains three hydrogen ions that dissociate to form three anions	H ₃ PO ₄

Some useful terms

In both diprotic and triprotic acids, the dissociation of the first hydrogen ion will results in a stronger acid than the acid formed by the second and third dissociation.

Strong base – a base that dissociates completely into ions in water. *Examples*: NaOH, MgO

Weak base - a base that dissociates very slightly in a water solution. $\ensuremath{\textit{Example}}$: NH_3

Concentration of an Acid or Base

Recall that when in solution, acids and bases dissociate into ions. When you determine the concentration of hydrogen ions in solution (amount of H+ ions/ total solution volume) you are determining the pH of that particular solution. pH stands for, "the power of hydrogen". The pH of a substance can be determined a number of different ways, such as with the use of pH paper, an electronic pH meter or mathematically using the following formulas:

Square brackets [] around a chemical formula represents, "the concentration of"

Examples:

What is the pH of a solution with a $[H_3O^+]$ of 1.0×10^{-5} ?

Gastric juice has a pH of 1.5, what is the $[H_3O^+]$?

The relative concentration of $[H_3O^+]$ and $[OH^-]$ ions are as follows:

Acidic Neutral Basic

A pH scale is a convenient way to relate the pH of a solution to its degree of acidity/alkalinity.

The pH scale ranges from 1 to 14 and each pH unit represents a factor of 10.

Examples:

A change in pH from 3 to 8 is a(n) ______ increase/decrease in $[H_3O^*]$

A change in pH from 11 to 2 is a(n) ______ increase/decrease in $[H_3O^{\dagger}]$

Neutralization Reactions

Neutralization occurs when hydroxide ions (Arrhenius base) and hydrogen ions (acid) are mixed to make water and a salt. The general word equation is:

acid + base > salt + water

Example:

Aqueous solutions of hydrobromic acid and beryllium hydroxide undergo a neutralization reaction to produce water and beryllium bromide.

2HBr(ag)+ Be(OH)2(ag) -2H2012) + BeB52(ag)

Complete the following equations:

 $_$ H₂SO_{4 (aq)} + $_$ LiOH (aq) \rightarrow

 $\frac{3}{2} C_{a}(OH)_{2(aq)} + \frac{2}{2} H_{3}PO_{4(aq)} \rightarrow 6 H_{2}O(l) + (a_{3}(POH)_{2}(aq))$

Which acid and base would you react together to produce the following salts: i) KNO3

 $\begin{array}{c} \text{ii)} c_{\alpha}(CH_{3}COO)_{2} \\ (C_{2}H_{3}O_{2})_{2} \end{array} \qquad (\sigma(0H)_{2} \quad H(C_{2}H_{3}O_{2})_{2} \end{array}$

Acid-Base Titrations

A "titration" refers to a technique that involves the careful measuring of the volume of one solution required to completely react with a known quantity of another.

In an acid-base titration, measuring the volume of a **base** (of **known molarity**) allows us to determine the **molarity** of the **acid**. In this case an **acid-base indicator** is used to indicate when the neutralization reaction is complete. Phenolphthalein is the most common indicator used. It will be **clear** when added to the **acid**; neutralization occurs at the first signs of the solution turning and remaining a faint pink colour.

Example #1

arat

In an acid-base titration, 25.00 mL of HNO_3 is required to neutralize 33.00 mL of 0.25 M NaOH. Calculate the molarity of the acid?

 $HNO_{3}(a_{1}) + NaOH(a_{1}) \rightarrow H_{2}O(R) + NaNC$ $V = 0.025L \quad V = 6.033L$ C = 0.25MC = 7NNOH=CV =(0.25)(0.033)= 0.00825mol [mo] NadH = 1 mol HND3 0.00825mal X=0.00825mol of HNO3 $C_{HNO_3} = \frac{1}{1/2}$ = (0,00825)= 0.33 M

[HN03] is 6.33M ঠ Ծ Շ

Example #2

In an acid-base titration, 43.00 mL of 0.30 M KOH is required to neutralize 10.00 mL of H2SO4. Calculate the molarity of the acid?