Factors that Affect the Rate of Dissolving and Solubility

Dissolving

One very important property of a solution is the rate of dissolving, or how quickly a solute dissolves in a solvent. When dissolving occurs, there in NO CHEMICAL REACTION involved. Therefore, the solute and solvent can be separated using physical properties such as boiling points or filtration.

The rate at which a solute dissolves depends on a number of factors:
i) Temperature

Increasing temperature increases the kinetic energy (energy of motion) of the molecules, which increases the frequencies of collisions and the rate of dissolving.
ii) Agitation

Stirring/shaking brings fresh solvent into contact with undissolved solute, increasing collisions and the rate of dissolving.
iii) Particle Size

Crushing solute into smaller pieces increases the surface area that is in contact with solvent, thus increasing the rate of dissolving.

The Dissolving Process

Whether or not a solute dissolves and to what extent depends on the forces of attraction between:
> Solute particles
> Solvent particles
$>$ Solute and solvent particles

When the forces of attraction between different particles in a mixture are stronger than the forces of attraction between like particles in the mixture, a solution forms. The strength of each attraction influences the solubility, or the amount of solute that dissolves in a solvent.

The dissolving process can be broken down into three key steps:

1. The forces holding the solute together must be broken (requires energy)

Ionic compounds - the forces holding the ions together must be broken

Covalent molecules - the forces holding molecules together must be broken
2. The intermolecular forces (between particles) holding the solvent together must be broken (requires energy)
3. Solute and solvent attract (release energy) and the molecules of solute fill in the spaces between solvent molecules.

Note: Dissolving is more likely to occur if the energy required (steps 1 and 2) is less than the energy released (step 3).

Polar and Non-Polar Substances

In general, we can follow the rule of "like dissolves like" when trying to predict the solubility of different particles. Ionic solutes and polar covalent solutes dissolve in polar solvents and non-polar solutes dissolve in non-polar solvents.

Remember, you can use the difference in electronegativities ($\Delta \mathrm{EN}$) to predict if a compound is ionic, polar or non-polar.

There are a few possible forces that act between particles, which helps to explain the "like dissolves like" trend:

Dipole-Dipole Attractions - the attraction between the opposite partial charges on two different polar molecules.

Ion-Dipole Attractions - the attractive forces between an ion and a polar molecule. Ions posses a full charge and are therefore attracted to the partial charge on the polar molecules.

When ions are present in an aqueous solution, each ion is hydrated. This means that water molecules surround the ion. Hydrated ions can conduct electricity and are referred to as electrolytes.

Solubility

Solubility describes the amount of solute that can be dissolved in a given amount of solvent under given conditions.

A solute is described as soluble in a particular solvent if its solubility is greater than 1 g per 100 mL .

A solute is described as insoluble in a particular solvent if its solubility is less than 0.1 g per 100 mL .

Substances with solubility between these limits are called slightly soluble.

Factors affecting solubility include:

i) Molecular Size

Small molecules tend to be more soluble than large ones.
ii) Temperature

Affects the solubility of gases and solids in liquids.
For gases in liquids: as temp \uparrow solubility \downarrow
For solids in liquids: as temp \uparrow solubility \uparrow
A solubility curve (graph) describes how much solute can be dissolved in a given solvent at a certain temperature.
iii) Pressure

Affects the solubility of gases in liquids.
As pressure \uparrow solubility \uparrow

Concentration of Solutions

Concentration is defined as the amount of solute per quantity of solvent.

The concentration of a solution can be calculated. The approach for each calculation varies, depending on the type of solution.

1. Calculation as Mass/Volume (m / v) Percent

Gives the mass of solute dissolved in a volume of solution, expressed as a percent.

$$
\text { Mass } / \text { Volume \% }=\frac{m_{\text {solute (J) }}}{V \text { solution (mL) }} \times 100
$$

Examples:
2.00 mL of distilled water is added to 4.00 g of a powdered drug. The final volume of the solution is 3.00 mL . Calculate the percent m / v and then express the drug concentration in $\mathrm{g} / 100 \mathrm{~mL}$.

$$
\times 10^{\circ}
$$

solution is

$$
133 \% \mathrm{~m} / \mathrm{v} \text { ? }
$$

$$
100 \mathrm{~mL} \text { would }
$$

What mass of a drug is required to make a 2.0 L solution if the

$$
\begin{aligned}
& \text { have } 133 \mathrm{~g} \text { of drug. } \\
& \text { solution if tho }
\end{aligned}
$$

$$
\begin{aligned}
& \text { recommended concentration is } 1.7 \% \text { ? } \\
& \sqrt{\text { recommended concentration is } 17 \% \text { solute }}=\frac{(\mathrm{m} / \mathrm{V} \%)^{2}(V \text { solnhbi })}{100} \\
& \begin{array}{l}
=\frac{(1.7)(2006)}{100} \\
2=349
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& v_{1} m / v \%=\frac{m_{\text {sol }} / 2 t}{v_{\text {sol }}} \times \\
& \begin{array}{l}
=\frac{4.00 \mathrm{~g}}{3.00 \mathrm{LL}} \\
V_{2}=133 \%
\end{array}
\end{aligned}
$$

$30 \therefore 34 \mathrm{~g}$ of the drug is required
2. Calculation as Mass/Mass (m / m) Percent

Gives the mass of solute divided by the mass of solution, expressed as a percent.

$$
\text { Mass } / \text { Mass } \%=\frac{m_{\text {solute }}(g)}{m_{\text {solution }}(g)} \times 100
$$

Example:
An aqueous solution of calcium chloride has a mass of 23.47 g . The solvent was evaporated and the residue has a mass of 4.58 g . Calculate the $\mathrm{m} / \mathrm{m} \%$ of calcium chloride in the solution. How many grams of calcium chloride would be present in a 100 g sample?

$$
\begin{aligned}
& \sqrt{1 m / m \%}=\frac{m_{\text {solute }} \times 100 \quad \sqrt{m} \times 1 u t i o n}{3} \text {. the solution }
\end{aligned}
$$

3. Concentration as Volume/Volume (v / v) Percent of $\mathrm{Ca}_{1} \mathrm{C}_{2}$,

Gives the volume of solute divided by the volume of solution, expressed as a percent.

$$
\text { Volume/Volume \% }=\frac{V_{\text {solute }}(m L)}{V_{\text {solution }}(\mathrm{mL})^{2}} \times 100
$$

Example:
Rubbing alcohol is sold as a $70 \%(\mathrm{v} / \mathrm{v})$ solution. What volume of alcohol is used to make 500 mL of rubbing alcohol?

$$
\begin{aligned}
V_{1} v_{\text {solute }} & =\frac{(v / v \%)(v \text { solution })}{100} \\
& =\frac{(70)(500)}{100}
\end{aligned}
$$

350 mL of alcohol is needed
4. Parts per Million (ppm) and Parts per Billion (ppb)

Describes the concentration of very small quantities. Usually expressed in terms of mass/mass relationships.

$$
\begin{aligned}
& \mathrm{ppm}=\frac{m_{\text {solute l }}(g)}{m_{\text {solution }(g)}^{p p b}}=\frac{m_{\text {solute }}(g)}{m_{\text {solution (g) }}} \times 10^{6}
\end{aligned}
$$

Note: Your final answer does not refer to the number of particles per million or billion, but rather the mass of solute compared to the mass of solution.

Example:
A shipment of oranges is returned if it contains more than 25 ppb of mould. A company received 20000 kg of oranges. What is the maximum mass of mould allowed before the shipment should be sent back?

$$
\begin{aligned}
& m_{\text {solute }}=\frac{(p p b)\left(m_{\text {solntor }}\right.}{10^{9}} \\
&=\frac{(25)(20000000)}{10^{9}} \\
&=0.5 \mathrm{~g} \\
& \therefore 0.5 \mathrm{~g} \text { of mould } \\
& \text { wall be present. }
\end{aligned}
$$

Molar Concentration

Molarity (C) is the number of moles of solute dissolved per litre of solvent.

The equation we use to calculate molar concentration is:

Where, $\quad C=$ molarity ($\mathrm{mol} / \mathrm{L}$ or M)
$n=$ amount of solute in moles
$V=$ volume of solution in Litres

Examples:
What is the molar concentration of 1.20 g of NaNO_{3} in 80.0 mL of solution?

$$
h=\frac{m}{n}
$$

N

$$
\begin{aligned}
& V_{1} n=C V \\
& =(0.430)(0.650) \quad V^{m n}=(0.2795)(56.105) \\
& V_{2}=0.2795 \mathrm{mb} \quad V_{A}=15.68 \mathrm{~g} \\
& V_{5}^{\circ} D 15.68 \mathrm{~g} \text { are required. }
\end{aligned}
$$

Preparing Solutions and Dilutions

A standard (stock) solution is a solution with known concentration.

There are 2 ways to prepare a solution:
i. Dissolve a desired amount of solute in a set amount of solvent
ii. Dilute a standard solution

A useful tool in preparing solutions is a volumetric flask \rightarrow a pear-shaped glass with a flat bottom and a long neck. Volumetric flasks provide are very accurate tools for measuring volumes.

To prepare a solution you should perform the following steps:

1. Determine the mass (g) of solute required to make the desired volume (L) and concentration (mo lL) of solution.

2. Measure out and dissolve the solute in approximately $\frac{1}{2}$ the total volume of solvent.
$\underset{ }{x}$
3. Raise the volume of solution to the desired total volume by adding more solvent.

Diluting is a process that makes a solution that is less concentrated. This can be done by:
i. Adding more solvent (more common)
ii. Removing solute

Dilution Calculations:

Step 1: Find the number of moles you need

$$
V_{t_{2} O}=V_{\text {solution }}-V_{\text {stock }}
$$

Example \#1
How do you make a 1.50 L solutions of NaCl with a concentration of 6.00 M from a stock solution with a concentration of 15.0 M?

$$
n_{\text {dined }}=C V
$$

ted

3 (3)

$$
\begin{aligned}
& \text { Alternatively we can perform dilution calculations using the following equation: } \\
& \mathrm{H}_{2}=0.9 \mathrm{~L} \text { of } \mathrm{O}
\end{aligned}
$$

Where $\quad C_{1}=$ Molarity of stock solution
$V_{1}=$ Volume of stock solution
$C_{2}=$ Molarity of "new" solution
$V_{2}=$ Volume of "new" solution
Lets try this equation to solve the previous example!!!

If 85.0 mL of 0.950 M sodium sulfate solution was used to prepare 200 mL of a dilute sodium sulfate solution, what is the new concentration made?

Reactions in an Aqueous Solution-
 Ionic Equations

When an ionic compound is placed in water, most will dissolve, which means they are soluble in water. Some ionic compounds will remain as a solid and are insoluble.

If an ionic compound dissolves in water, it means that the compound is temporarily splitting apart into its ions. This process is referred to as an ionic compound dissociating. This is NOT a chemical reaction and the ionic compound will readily re-crystallize when removed from the water source.

Double displacement reactions occur in water, and are a direct result of ionic compounds dissociating into their ions. Recall that a double displacement reaction will only occur if water, gas or a precipitate forms.

We can show the step-by-step process of a double displacement reaction by writing out an ionic equation. There are several different components to an ionic equation.

Example \#2

Precipitate reactions can be used to generate a precipitation profile for known ions, which can be used to identify ions in solution.

	$\mathrm{CO}_{3}{ }^{-2}$	OH^{-1}	$\mathrm{SO}_{4}{ }^{-2}$
Ca^{+2}			
Ba^{+2}			
Unknown	ppt	ppt	ppt

The unknown precipitation profile matches that of \qquad .

Flow charts can also be used to illustrate what ions may be added to a solution containing many ions to allow for individual separation of ions by precipitation.

When attempting to separate ions from a solution a piece of lab equipment called a centrifuge can be used. A centrifuge spins at very high speeds to separate different particles from each other based on their densities.

The part of the solution that does not settle to the bottom of the centrifuge is called the supernatant.

Solution Stoichiometry
Recall that stoichiometry involves calculating the amounts of reactants and products in chemical reactions using a balanced chemical equation. Previously you learned how to calculate the amount of atoms, particles or mass of a compound using the stoichiometry strategies. You can apply these same skills when approaching calculations involving solutions, with the addition of a few additional steps.

Example \#1

Calculate the concentration of calcium chloride in a solution made by mixing 150 mL of a 0.200 M calcium hydroxide solution with 100 mL of a 0.500 M hydrochloric acid solution.

$$
\begin{aligned}
& \mathrm{ICa}_{\mathrm{O}}^{\mathrm{oH}} \mathrm{H}_{2}(\mathrm{aq})+2 \mathrm{HCl} \text { (ar) } \rightarrow \mathrm{CaCl}_{2}(\mathrm{ag})+2 \mathrm{H}_{2} \mathrm{O} \\
& V=0.156 \mathrm{~L} \quad V=0.100 \mathrm{~L} \quad C=\text { ? } \\
& / C=0.200 \mathrm{M} \quad C=0.500 \mathrm{~m} \\
& \cap_{\mathrm{Ca}_{4}(0+1)_{2}}^{2} \mathrm{CV}, \quad n_{H C l}=C V
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Vq}_{r_{a C c_{2}}}^{C}=\frac{n}{V}
\end{aligned}
$$

$$
\begin{aligned}
& 10=0.1 \mathrm{~m}
\end{aligned}
$$

Example \#2

Suppose you want to remove the barium ions from 120 mL of 0.05000 M aqueous barium nitrate solution. What is the minimum mass of sodium carbonate that you should add?

Strong and Weak Acids and Bases

Strong acid - an acid that dissociates completely into ions in water.
Example: $\quad \mathrm{HCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{Cl}^{-}{ }_{(a q)}$
When hydrogen chloride molecules enter an aqueous solution, 100% of the hydrogen chloride molecules dissociate. As a result the solution contains the same percent of $\mathrm{H}+$ ions (in the form of $\mathrm{H}_{3} \mathrm{O}^{+}$) and Cl ions: 100%

Weak acid - an acid that dissociates very slightly in a water solution.
Example: $\quad \mathrm{CH}_{3} \mathrm{COOH}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(1)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq })}+\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\text {aq })}$
On average, only about 1% of the acetic acid molecules dissociate at any given moment.

Notice that the arrow used in the dissociation of a weak acid points in both directions. This indicates that the reaction is reversible. The products of the reaction will also react to produce the original reactants.

Some useful terms.

Term	Definition	Example
Monoprotic acid	Contains only a single hydrogen ion that can dissociate	HCl
Diprotic acid	Contains two hydrogen ions that dissociate to form two anions	$\mathrm{H}_{2} \mathrm{SO}_{4}$
Triprotic acid	Contains three hydrogen ions that dissociate to form three anions	$\mathrm{H}_{3} \mathrm{PO}_{4}$

In both diprotic and triprotic acids, the dissociation of the first hydrogen ion will results in a stronger acid than the acid formed by the second and third dissociation.

Strong base - a base that dissociates completely into ions in water.
Examples. $\mathrm{NaOH}, \mathrm{MgO}$
Weak base - a base that dissociates very slightly in a water solution.
Example: NH_{3}

Concentration of an Acid or Base

Recall that when in solution, acids and bases dissociate into ions. When you determine the concentration of hydrogen ions in solution (amount of $\mathrm{H}+$ ions/ total solution volume) you are determining the pH of that particular solution. pH stands for, "the power of hydrogen". The pH of a substance can be determined a number of different ways, such as with the use of pH paper, an electronic pH meter or mathematically using the following formulas:

Square brackets [] around a chemical formula represents, "the concentration of"

Examples:

What is the pH of a solution with a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of 1.0×10^{-5} ?

Gastric juice has a pH of 1.5 , what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?

The relative concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$ions are as follows:

Acidic
Neutral
Basic

A pH scale is a convenient way to relate the pH of a solution to its degree of acidity/alkalinity.

The pH scale ranges from 1 to 14 and each pH unit represents a factor of 10 .

Examples:

A change in pH from 3 to 8 is $\mathrm{a}(\mathrm{n})$ \qquad increase/decrease in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

A change in pH from 11 to 2 is $\mathrm{a}(\mathrm{n})$ \qquad increase/decrease in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Neutralization Reactions

Neutralization occurs when hydroxide ions (Arrhenius base) and hydrogen ions (acid) are mixed to make water and a salt. The general word equation is:

$$
\text { acid }+b a s e \rightarrow s a 1 t+\text { water }
$$

Example:
Aqueous solutions of hydrobromic acid and beryllium hydroxide undergo a neutralization reaction to produce water and beryllium bromide.

$$
2 H \mathrm{Br}(\mathrm{ag})+\mathrm{Be}(\mathrm{OH})_{2(\mathrm{ap})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{Be}_{2} \mathrm{Br}_{2}\left(\mathrm{~g}_{9}\right.
$$

Complete the following equations:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\ldots \mathrm{LiOH}_{(\mathrm{aq})} \rightarrow \\
& \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})}+\sum_{\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{Ca}_{3}(\mathrm{pO} 4)_{2}(\mathrm{ag})}
\end{aligned}
$$

Which acid and base would you react together to produce the following salts:
i) KNO 3

ii) $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO} \mathrm{CO}_{2}\right.$
$\mathrm{Ca}\left(\mathrm{OH} \mathrm{H}_{2}\right.$ $\mathrm{H}_{\mathrm{C}} \mathrm{H}_{3} \mathrm{O}_{2}$

Acid-Base Titrations

A "titration" refers to a technique that involves the careful measuring of the volume of one solution required to completely react with a known quantity of another. λ t J fran +
In an acid-base titration, measuring the volume of a base (of known molarity) allows us to determine the molarity of the acid. In this case an acid-base indicator is used to indicate when the neutralization reaction is complete. Phenolphthalein is the most common indicator used. It will be clear when added to the acid; neutralization occurs at the first signs of the solution turning and remaining a faint pink colour.

Example \#1
In an acid-base titration, 25.00 mL of HNO_{3} is required to neutralize 33.00 mL of 0.25 M NaOH . Calculate the molarity of the acid?

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{NaNO}_{3}(\mathrm{aq}) \\
=0.025 \mathrm{~L}=0.033 \mathrm{~L}
\end{array} \\
& V=0.025 \mathrm{~L} \quad V=0.033 \mathrm{~L} \\
& C=\text { ? } \\
& C=0.25 \mathrm{M} \\
& n_{\mathrm{NaOH}}=C V \\
& =(0.25)(0.033) \\
& =0.00825 \mathrm{~mol} \\
& \underline{\mid m o l \mathrm{NaxH}}=1 \mathrm{~mol} \mathrm{HND}_{3} \\
& 0.00825 \mathrm{~mol} x \\
& x=0.00825 \mathrm{~mol}^{2} \text { of } \mathrm{HNO}_{3} \\
& \mathrm{CrNO}_{3}=\frac{n}{V} \\
& =\frac{(0.00825)}{0.025} \\
& =0.33 \mathrm{M}
\end{aligned}
$$

$$
\therefore\left[\mathrm{HNO}_{3}\right] \text { is } 0.33 \mathrm{M}
$$

Example \#2
In an acid-base titration, 43.00 mL of 0.30 M KOH is required to neutralize 10.00 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the molarity of the acid?

