Solutions : Solubility unit Rexitas
3. $n_{\mathrm{MaNO}_{3}}=\frac{m}{M}$

$$
C=\frac{n}{V}
$$

$$
\begin{aligned}
& =\frac{(1.00 \mathrm{~g})}{(85.0 \mathrm{~g} / \mathrm{mol})} \quad=\frac{(0.011765 \mathrm{~mol})}{(0.315 \mathrm{~L})} \\
& =0.011765 \mathrm{~mol} \mathrm{NaNo}
\end{aligned}=\quad=0.037 \mathrm{M}
$$

\therefore the $\left[\mathrm{NaNO}_{3}\right]$ is 0.037 M
4.
5.

$$
\begin{aligned}
C_{1} V_{1} & =C_{2} v_{2} \\
C_{2} & =\frac{C_{1} V_{1}}{V_{2}} \\
& =\frac{(4.00 \mathrm{M})(0.080 \mathrm{~L})}{(0.400 \mathrm{~L})} \\
& =0.8 \mathrm{M}
\end{aligned}
$$

\therefore the $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$ is 0.8 M
6.

$$
\begin{aligned}
n & =C V \\
& =(0.00100 \mathrm{M})(0.100 \mathrm{~L}) \\
& =1.0 \times 10^{-4} \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

\therefore there are $1.0 \times 10^{-4} \mathrm{~mol}$ of NaOH

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(a 9)} \rightarrow \mathrm{Ca}^{2+} \text { (aq) }+ \mathrm{NaO}_{3}^{-} \text {(aq) } \\
& n=5.0 \times 10^{-2} \mathrm{~mol}
\end{aligned} \\
& \frac{2 \mathrm{~mol} \mathrm{NO}}{3}-1 \mathrm{mal} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}, V=\frac{n}{\mathrm{C}} \\
& =\frac{(0.025 \mathrm{~mol})}{\left(4.00 \times 10^{-2} \mathrm{~mol} / \mathrm{l}\right)} \\
& =0.625 \mathrm{~L} \\
& \therefore 0.625 \mathrm{~L} \text { of } \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \text { contains } 5.0 \times 10^{-2} \mathrm{~mol} \text { of } \mathrm{NO}_{3} \text { - }
\end{aligned}
$$

SoS.UR
7.

$$
\begin{aligned}
\mathrm{m} / \mathrm{m} \% & =\frac{\text { mass of solute }(\mathrm{g})}{\text { mass of solution }(\mathrm{g})} \times 100 \\
& =\frac{(0.02 \mathrm{~g})}{(70000 \mathrm{~g})} \times 100 \\
& \doteq 2.86 \times 10^{-5 \%} \quad \\
& \begin{aligned}
\text { nic/day } & =\text { nic./cig } \times \text { cig } / \text { day } \\
& =(0.001 \mathrm{~g}) \times 20 \\
& =0.02 \mathrm{~g} \mathrm{nic}
\end{aligned}
\end{aligned}
$$

8.

$$
\left.\begin{aligned}
n_{\mathrm{Na}^{+}} & =\frac{m}{M} \\
& =\frac{(3.4 \mathrm{~g})}{(22.99 \mathrm{~g} / \mathrm{mol})} \\
& =0.1479 \mathrm{~mol} \mathrm{Na}^{+}
\end{aligned} \right\rvert\, \begin{aligned}
C & =\frac{n}{V} \\
& =\frac{(0.1479 \mathrm{~mol})}{(1 \mathrm{~L})} \\
& =0.1479 \mathrm{M}
\end{aligned}
$$

$$
\therefore\left[\mathrm{Na}^{+}\right] \text {is } 0.1479 \mathrm{M}
$$

9. a) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (aq)
b) $\mathrm{HNO}_{3}(\mathrm{aq})$
c) HBr (aq)
d) $\mathrm{HCl}(\mathrm{ca})$ sulphuric acid nitric acid hydrobromic acid hydrochloric
e) $H F_{\text {(aq) }}$
hydrofluoric a cid.

$$
\begin{aligned}
\text { (0. a) }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] & =10^{-\mathrm{P}^{-H}} \\
& =10^{-2.5} \\
& \doteq 3.16 \times 10^{-3} \mathrm{M} \\
\therefore 0 \text { the } & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {is } 3.16 \times 10^{-3} \mathrm{~m} }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10.b) } \mathrm{NaOH}(\text { aq })+\mathrm{HCl}_{(a q)} \rightarrow \mathrm{H}_{2} \mathrm{O}(e)+\mathrm{NaCl}_{(a q)}
\end{aligned}
$$

S.S.UR
11.

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{OH})_{2 \mathrm{Cag}} \leftrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \\
& C=2.0 \times 10^{-5} \mathrm{M} \\
& \mathrm{OOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& =-\log \left[2.0 \times 10^{-5}\right] \\
& =4.70 \\
& \mathrm{pH}=14-\mathrm{pOH} \\
& =14-4.70 \\
& =9.3
\end{aligned}
$$

\therefore the pH of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 9.3
12.

$$
\begin{array}{rlrl}
n_{\mathrm{NaOH}} & =\frac{m}{M} & C & =\frac{n}{V} \\
& =\frac{(2.5 \mathrm{~g})}{(40.0 \mathrm{~g} / \mathrm{mol})} & & =\frac{(0.0625 \mathrm{~mol})}{(0.100 \mathrm{~L})} \\
& =0.0625 \mathrm{~mol} \mathrm{NaOH} & & =0.625 \mathrm{~m} \\
\mathrm{POH} & =-\log \left[0 H^{-}\right] \\
& =-\log [0.625] \\
& =0.204 \\
P H & =14- \\
& =12.8 & & \\
& &
\end{array}
$$

\therefore the pH is 12.8
13. a)

$$
\underset{\text { acid }}{\mathrm{HF}(\text { aq })}+\underset{\text { base }}{\mathrm{NH}_{3}(\text { aq })} \rightarrow \mathrm{NH}_{4}^{+}(\text {aq })+\mathrm{F}^{-}(\text {aq })
$$

b) $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$ baq) $+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \xrightarrow{\text { conj acid }} \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{+}$conj base

c)

$$
\begin{aligned}
& \text { conjacid conybase }
\end{aligned}
$$

S.Sin.R
13.d)
14.

$$
\begin{aligned}
& \frac{1 \mathrm{~mol} \mathrm{HCl}}{0.28 \mathrm{~mol}} \rightarrow \frac{1 \mathrm{mal} \mathrm{H}_{3} \mathrm{O}^{+}}{x} \quad \frac{1 \mathrm{mal} \mathrm{HNO}_{3}}{0.24 \mathrm{~mol}}=\frac{1 \mathrm{~mol} \mathrm{H} \mathrm{H}_{3}}{} \\
& x=0.28 \mathrm{~mol} \mathrm{H} \mathrm{H}^{+} \\
& x=0.24 \mathrm{mal}_{3} \mathrm{H}^{+}
\end{aligned}
$$

$$
\begin{aligned}
n_{\mathrm{H}_{3} \mathrm{O}^{+} \text {total }} & =0.28+0.24 \\
& =0.52 \mathrm{~mol} \mathrm{H}_{3} \mathrm{l}
\end{aligned}
$$

$$
\begin{aligned}
1 & =0.28+0.24 \\
& =0.52 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}
\end{aligned}
$$

$$
v_{\text {total }}=0.070+0.030
$$

$$
=0.100 \mathrm{~L}
$$

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =\frac{n}{\mathrm{~V}} \\
& =\frac{0.52 \mathrm{~mol}}{0.100 \mathrm{~L}} \\
& =5.2 \mathrm{M}
\end{aligned} \begin{aligned}
p H & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& =-\log [1.04] \\
& =-0.017 \\
& =0
\end{aligned}
$$

$$
C_{2}=\frac{C_{1} U_{1}}{V_{2}}
$$

$$
=\frac{(5.2 \mathrm{M})(0.100 \mathrm{~L})}{(0.50)}
$$

$$
(0.500)
$$

$$
=1.04 \mathrm{M}
$$

\therefore the pH of the solution is 0 .

$$
\begin{aligned}
& \left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}(\text { aq })+\mathrm{H}_{2} \mathrm{O}(\mathrm{e}) \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+} \text {(aq) }+\mathrm{OH}^{-} \text {(aq) } \\
& \text { base acid conjacid conjbase } \\
& \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-} \quad \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{5}^{-} \\
& \begin{aligned}
n_{\mathrm{HCl}} & =C V \\
& =(4.00 \mathrm{M})(0.07 \mathrm{~L})
\end{aligned} \\
& =0.28 \mathrm{~mol} \mathrm{HCl} \\
& n_{H N O_{j}}=\mathrm{CV} \\
& =(8.00 \mathrm{~m})(0.0302) \\
& =0.24 \mathrm{~mol} \mathrm{HNO}
\end{aligned}
$$

Solutions i Solubility Sample Questions
1.

$$
\begin{aligned}
\mathrm{m} / \mathrm{m} \% & =\frac{m_{\text {solute }(\mathrm{g})}^{m \text { solution }(\mathrm{g})}}{} \times 100 \\
& =\frac{(4.58 \mathrm{~g})}{(23.47 \mathrm{~g})} \times 100 \\
& =19.5 \%
\end{aligned}
$$

\therefore the $\mathrm{m} / \mathrm{m} \%$ of CaCl_{2} is 19.5%.
2.
$\therefore 0.5 \mathrm{~g}$ is the maximum mass allowed.
3.

$$
\left.\begin{array}{rl}
n_{\mathrm{NaCl}} & =\frac{m}{m} \\
& =\frac{(0.90 \mathrm{~g})}{(58.44 \mathrm{~g} / \mathrm{mol})} \\
& =0.0154 \mathrm{~mol} \mathrm{NaCl}
\end{array}\right\} \begin{aligned}
& c=\frac{n}{v} \\
&=\frac{(0.0154 \mathrm{~m}}{(0.100 \mathrm{~L})} \\
&=0.15 \mathrm{M}
\end{aligned}
$$

\therefore at AaCl$]$ is 0.15 M
4. $\quad v_{1}=\frac{c_{2} v_{2}}{c_{1}}$

$$
=\frac{(0.10 \mathrm{M})(2.0 \mathrm{~L})}{(18 \mathrm{M})}
$$

$$
=0.0111 \mathrm{~L}
$$

$$
\begin{aligned}
V_{\mathrm{H}_{2} \mathrm{O}} & =V_{\text {total }}-V_{1} \\
& =2.0-0.0111 \\
& =1.989 \mathrm{LH} \mathrm{O}
\end{aligned}
$$

\therefore Mr. Arthur needs 0.0111 L of $18 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ ह1. 1.989 L of $\mathrm{H}_{2} \mathrm{O}$.

$$
\begin{aligned}
& p p b=\frac{m_{\text {solute }(g)}}{m_{\text {solution }(g)}} \times 10^{9} \\
& m_{\text {solute }}=\frac{p p b \times m \text { ablution }}{10^{1}} \\
& =\frac{(25)(20000000)}{10^{9}} \\
& =0.5 \mathrm{~g}
\end{aligned}
$$

352
5. $\mathrm{Na}_{2} \mathrm{~S}_{\text {(aq) }}+\mathrm{FeSO}_{4 \text { (aq) }} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{FeS}_{(3)}$

$$
2 \mathrm{Na}^{\mathrm{F}}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq})+\mathrm{Fe}_{(\mathrm{aq})}^{2+}+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{SO}_{4}^{2-}(\mathrm{aq})+\mathrm{FeS}(\mathrm{~s})
$$

spectator ions: Na^{+}(aq) $; ~ \mathrm{SO} 4^{2-}$ (aq)

$$
\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \rightarrow \mathrm{FeS}_{(s)}
$$

b. Add one crystal if it

$$
\text { dissolves }=\text { unsaturated }
$$

does not disosive = saturated
It recrystallizes = supersaturated
7. $\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})+\underset{V=0.025 \mathrm{~L}}{\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Hg}_{\mathrm{S}}(\mathrm{H})+2 \mathrm{HaN}_{3}(\mathrm{laq})}$
$m_{\mathrm{Hg} \mathrm{S}}=\cap M$ $=\left(2.125 \times 10^{-3}\right)(232.65)$

$$
\doteq 0.493 \mathrm{~g}
$$

$$
\therefore 0.493 \text {, of } \mathrm{HgS}
$$ is expected to precipitate

9.

$$
\begin{aligned}
p H & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& =-\log \left[3.8 \times 10^{-3}\right] \\
& =2.42 \therefore \text { the pH of the solution is, } 2.42 .
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \\
& \text { acid base conjach conjbase }
\end{aligned}
$$

$$
\begin{aligned}
& V=0.025 \mathrm{~L} \quad V=0.0565 \mathrm{~L} \quad \mathrm{~m}=\text { ? } \\
& C=0.085 \mathrm{M} \quad C=0.10 \mathrm{M} \\
& n_{\mathrm{Na}_{2} \mathrm{~S}}=C V \\
& =(0.085)(0.025) \\
& \begin{aligned}
& =(0.085)(0.025) & n \text { Hg(m) }) & =(0.10)(0.0565) \\
& =2.125 \times 10^{-3} \mathrm{~mol} & & =5.65 \times 10^{-3} \mathrm{~mol}
\end{aligned} \\
& \frac{1 \mathrm{~mol}^{2} \mathrm{Nas}_{5}}{2.125 \times 10^{-3}}=\frac{1 \mathrm{~mol} \mathrm{HgS}}{5} \\
& \begin{aligned}
\left.n_{\text {Hg(n }}^{3}\right)_{2} & =C V \\
& =(0.10)(0.651
\end{aligned} \\
& L . R x=2.125 \times 10^{-2} \times 3
\end{aligned}
$$

10.

$$
\begin{aligned}
& \mathrm{HCl}(\text { (aq) }+ \\
& \mathrm{V}=0.01384 \mathrm{~L} \mathrm{NaO}(\text { (aq) } \\
& \mathrm{C}=?
\end{aligned} \quad \mathrm{~V}=0.025 \mathrm{~L}, \mathrm{NaCl}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\left.\begin{array}{rl}
r_{\mathrm{NaOH}} & =C V \\
& =(0.100 \mathrm{~m})(0.02 \mathrm{sL}) \\
& =2.5 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH} \\
\frac{1 \mathrm{mal} \mathrm{NaOH}}{2.5 \times 10^{-3} \mathrm{~mol}}=\frac{1 \mathrm{molHCl}}{x} \\
x & x=2.5 \times 10^{-3} \mathrm{mal} \mathrm{HCl}
\end{array}\right\} \begin{aligned}
C_{H C I} & =\frac{n}{V} \\
& =\frac{\left(2.5 \times 10^{-3}\right)}{(0.01384 \mathrm{~L}} \\
& =0.1806 \mathrm{M}
\end{aligned}
$$

\therefore the [MCI] is 0.1806 M .
\qquad

2DI Chemistry Review II

A. Fill in the blanks (use the following list)

catalyst	ionization	acid	base	neutralization
indicator	electrolyte	rate	pH	concentration

1. $A(n) A C I D$ is a substance that when dissolved in water ionizes to form H^{+}ions and anions.
2. The pH \qquad scale is used to determine the degree of acidity or alkalinity.
3. The amount of pure acid or base per 1 L of water is the definition of _CONCENTRATION \qquad .
4. When an ionic substance is dissolved in water it undergoes the process of __IONIZATION __.
5. $A(n)$ _BASE_ is a substance that when dissolved in water ionizes to form cations and OH^{\prime} ions.
6. An aqueous solution that is capable of conducting electricity is known as a(n) _ELECTROLYTE _
7. A substance that speeds up chemical reactions is called a \qquad CATALYST \qquad .
8. The speed at which a reaction occurs is the __RATE_ of reaction.
9. $A(n)$ _INDICATOR_ is a substance that changes colour at a specific pH range.
10. Water and salt are the products of a \qquad NEUTRALIZATION \qquad reaction.
B. True or False (If the statement is false, rewrite the statement to make it true)
11. A strong base and a weak base could have the same pH level.

T
12. An acid with a pH of 2 is 20 times stronger than an acid with a pH of 4 .

F 200
13. Each 1 unit on the pH scale represents a tenfold increase in concentration.

T
14. the surface area of a reactant would increase the rate of reaction.

F INCREASING
15. Increasing the concentration of the reactants would increase the rate of reaction.

T
16. the temperature of the reaction would increase the rate of reaction.

F INCREASING
17. Phenolphthalein turns pink in an

F
BASE
C. Similarities/Differences (describe similarities/differences between each pair)
18. acid/base

- BOTH DISSOCIATE TO FORM IONS
- ACIDS FORM $\mathrm{H}_{3} \mathrm{O}^{+}$
- BASES FORM OH^{-}

20. surface area/temperature

- BOTH AFFECT THE RATE OF REACTION
- INCREASING SURFACE AREA INCREASES RATE
- INCREASING TEMPERATURE INCREASES RATE

22. strong acid/weak acid

- BOTH INDICATE THE POTENTIAL TO IONIZE
- STRONG ACIDS FULLY IONIZE
- WEAK ACIDS PARTIALLY IONIZE

24. $\mathrm{H}^{+} / \mathrm{OH}^{-}$

- TOGETHER MAKE $\mathrm{H}_{2} \mathrm{O}$
- H^{+}RELEASED FROM ACIDS
- OH' RELEASED FROM BASES

19. red litmus/blue litmus

- BOTH INDICATE pH OF SOLUTION
- RED LITMUS TURNS BLUE IN A BASE
- blUe litmus turns red in an acid

21. concentration/ionization

- BOTH INDICATE AMOUNT OF IONS IN SOL'N
- [] IS AMOUNT OF SOLUTE (mol) / LITRE
- IONIZATION IS AMOUNT OF IONS / MOLECULE

23. bromothymol blue/phenolphtalein

- BOTH ARE INDICATORS
- BTB TURNS YELLOW IN ACIDS
- PHENOLPHTHALEIN TURNS PINK IN A BASE

25. metal oxides/non-metal oxides

- BOTH ARE OXIDES
- METAL OXIDES IN WATER MAKE BASES
- NON-METAL OXIDES IN WATER MAKE ACIDS
D. Multiple choice (Choose the best answer)

26. Which of the following is an acid?
a) NaOH
b) $\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{HCH}_{3} \mathrm{CO}_{2}$
d) $\mathrm{Mg}(\mathrm{OH})_{2}$
27. Which of the following would make an acid when dissolved in water?
a) sulphur trioxide $\mathrm{SO}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$
b) magnesium oxide
c) aluminum oxide
d) copper(I) oxide
28. Which of the following would make a base when dissolved in water?
a) carbon dioxide
b) sulphur trioxide
c) sodium oxide $\quad \mathrm{Na}_{2} \mathrm{O}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow 2 \mathrm{NaOH}_{(q)}$
d) nitrogen dioxide
29. What type of reaction occurs between $\mathrm{NaOH}+\mathrm{HCl}$?
a) synthesis
b) decomposition
c) single displacement
d) double displacement
30. The pH of the reaction in \# 29 should be
a) 0
b) 5
c) 7
d) 9
31. When Alkaseltzer is ground into a powder, it reacts more quickly in water. This is an example of the effect of:
a) concentration
b) surface area
c) temperature
d) a catalys \dagger
32. Cake batter rises when the cake is baked. This is an example of the effect of:
a) concentration
b) surface area
c) temperature
d) a catalyst
33. Which of the following is a strong acid?
a) $\mathrm{HCH}_{3} \mathrm{CO}_{2}$
b) NaOH
c) HCl
d) $\mathrm{HC}_{2} \mathrm{H}_{5} \mathrm{O}_{2}$
E. Characteristics of Acids \& Bases (fill in the following chart)

INDICATOR/TEST	ACID	BASE
Red Litmus Paper	RED	BLUE
Blue Litmus Paper	RED	BLUE
Phenolphthalein	CLEAR	PINK
Bromothymol Blue	YELLOW	BLUE
Feel	S/A	SLIPPERY
Taste	SOUR	BITTER
Reaction with Mg	RELEASES H	
Reaction with baking soda	RELEASES CO $2(g)$	NR
Conductivity	STRONG = YES	NR

F. Making Acids \& Bases (write out the acid or base product and then balance the equation)
34. \qquad $\mathrm{SO}_{3(\mathrm{~g})}+$ $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$
35. \qquad $\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow 2 \mathrm{KOH}_{(\mathrm{aq})}$
36. \qquad $\mathrm{Na}_{2} \mathrm{O}_{(s)}+$ \qquad $\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})}$
37. \qquad $\mathrm{CO}_{(9)}+\ldots$ $\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{2(\mathrm{aq})}$ CARBONOUS ACID
38. \qquad $\mathrm{MgO}_{(\mathrm{s})}+\ldots \mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2(\mathrm{aq})}$
G. Neutralization (Write down the acid and base required to produce the following salts)
39. $\mathrm{Na}_{2} \mathrm{SO}_{4} \quad \mathrm{NaOH}_{(a q)}+\mathrm{H}_{2} \mathrm{SO}_{4(a q)}$
40. $\mathrm{MgCl}_{2} \quad \mathrm{Mg}(\mathrm{OH})_{2(a q)}+\mathrm{HCl}_{(\mathrm{aq})}$
41. NaNO_{3}

$$
\mathrm{NaOH}_{(\mathrm{oq)}}+\mathrm{HNO}_{3(\mathrm{aq})}
$$

42. $\mathrm{Li}_{3} \mathrm{PO}_{4}$

$$
\mathrm{LiOH}_{(a q)}+\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})}
$$

43. KCl

$$
\mathrm{KOH}_{(a q)}+\mathrm{HCl}_{(\mathrm{aq})}
$$

H. Identification of unknowns. (Explain how to identify each substance in the beakers by using different tests)
44. Suppose you are given five beakers, each containing an unknown liquid. One is distilled water, one is a strong acid, one is a weak acid, one is a base and one is a salt solution. Describe how you would find out which was which.

- PHENOLPHTHALEIN: DISTILLED WATER = CLEAR, ACIDS = CLEAR, SALT = CLEAR, BASE $=$ PINK
- CONDUCTIVITY TEST: DISTHLLED WATER = NO, STRONG ACID = BRIGHT, WEAK ACID = POOR, SALT = BRIGHT
- $\operatorname{BTB}=$ STRONG ACID $=$ YELLOW, SALT SOLUTION $=$

I. Acid-Base Application.

45. Explain why putting lemon on bitter tasting fish helps to minimize the bitter taste of fish.

- LEMON (ACID) NEUTRALIZES FISH (BASIC) MAKING IT TASTE LESS BASIC

46. A healthy pool has a pH level between 6.7 and 7.2. When a pool's pH level becomes too basic, algae starts to grow. If algae began to grow in the pool, what would you recommend that the pool owner should do to counter act the algae growth?

- ADD CHLORINE OR BROMINE (ACID) TO MAKE IT LESS BASIC SO ALGAE STOPS GROWING.

