Name: SAMPLE EXAM - ANSUUER
BLUEVALE COLLEGIATE INSTITUTE
COURSE: SCH 3UI
TEACHERS: Mr. Arthur
DATE: June, DD, YYYY
TIME: 2 HOURS
NQTE: \quad * Calculators are permitted but are not to be shared during the exam.
**The standard periodic table may be used.
*** Use of ceil phones and or MP3 players is prohibited.
The following exam contains $\mathbf{1 0}$ pages, $\mathbf{5 0}$ multiple choice questions, $\mathbf{2 0}$ Quicks and $\mathbf{1 5}$ short answer. questions. Total Marks: 150. Remember to read ALL questions carefully, answer all parts, show equations and include units. Failure to do so will result in loss of marks. Good Luck!

Part A MULTIPLE CHOICE (50 Marks)

Answer the following questions on the SCANTRON card provided. Remember to write your name and to use pencil on the SCANTRON.

1. Barium has a higher first ionization energy than strontium, based on their positions in the periodic table.

	A)	true
(B)	false	

2. Element 120 will be an alkaline earth metal.

C (C) 56 electrons, 50 protons, and 120 neutrons
4. In which pair of elements is the element with the smaller radius listed first?

	A)	potassium, calcium oxygen, sulfur
B	B)	C) aluminum, silicon iodine, bromine
	D)	

5. Which molecule is not linear?

6. Which ion tras the correct name and formula?
7. Which ion tas the corre

B (B) phosphite $\mathrm{EO}_{3}{ }^{3}$
hydrogen carbonate, HCO_{3}
D) chlorite, $\mathrm{ClO}_{2}{ }^{2-}$
7. What is the valence of iron in the compound FeN ?

	A)	-3
	B)	+1
C	(C)	$+3$
	D)	+2

8. Which bond is most polar?
9. Which bond is most polar?

A	A)	$\mathrm{H}-\mathrm{O}$	$3.44-2.20=1.24$
A	B	$\mathrm{I}-\mathrm{Br}$	$2.96-2.66=0.30$
	C)	$\mathrm{F}-\mathrm{Cl}$	$3.98-3.16=0.82$
	D)	$\mathrm{O}-\mathrm{S}$	$3.44-2.58=0.86$

9. Which element will form a covalent bond with nitrogen?

A)	Be
B)	Li
C)	K
(D)	O

10. A metal reacts with an ionic compound in a single displacement or substitution reaction. What does the metal atom replace?

B (B) the cation
C) either the anion or the cation
D) the less electronegative atom, if the co
D) the less electronegative atom, if the compound contains a complex anion
11. When the following skeleton equation is correctly balanced, what is the coefficient in front of silicon
11. tetrachloride?

A
$\begin{array}{lr} & -4 C \\ \text { (A) } & 1 \\ \text { B) } & 2 \\ \text { C) } & 4 \\ \text { D) } & 6\end{array}$
12. Which equation represents the decomposition reaction that occurs during the electrolysis of molten aluminum oxide?
$B \quad \begin{aligned} & \text { B) } \\ & \left.\begin{array}{l}\text { C) } \\ \text { D) } \\ 2 \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{l})} \rightarrow 4 \mathrm{Al}_{(1)}+3 \mathrm{O}_{2(\mathrm{~g})} \\ 2 \mathrm{AlO}_{(0)} \rightarrow 2 \mathrm{Al}_{(\mathrm{l})}+3 \mathrm{O}_{(\mathrm{g})}\end{array}\right]=2 \mathrm{Al}_{(\mathrm{ll}}+\mathrm{O}_{2(\mathrm{~g}}\end{aligned}$
D) $\quad 2 \mathrm{AlO}_{(0)} \rightarrow 2 \mathrm{Al}_{(1)}+\mathrm{O}_{2(g)}$
13. According to the activity series for metals, which three elements are correctly listed in order of decreasing reactivity? $1,102.2$
A B) $\times \begin{array}{ll}\mathrm{My}, \mathrm{Fe}, \mathrm{Pb} & 1.55,1.83,1.8\end{array}$
$\begin{array}{lll}\text { C) } \times \mathrm{Al}, \mathrm{Ca}, \mathrm{Li} & 1.61,1.00,0.98 \\ \text { D) } \times \mathrm{Sn}, \mathrm{Fe}, \mathrm{H} 2 & 1.96,1.83,2.20\end{array}$
14. Consider the following reaction

$\cos _{4}$

$$
\mathrm{H}_{5} \mathrm{C}_{40}+\mathrm{SiCl}_{4(1)}+8 \mathrm{Na}(\mathrm{~s}) \rightarrow\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{Si}_{(1)}+8 \mathrm{NaCl}_{(s)}
$$

\qquad
\qquad
$=$
\qquad
都

19. How many moles are in 2.55 g of sodium?

A)58.6 mol (Bi) 0.111 mol C) 0.0554 mol D) 9.02 mol$\quad n$	$=\frac{m}{M}$	
		$=\frac{2.55 \mathrm{~g}}{22.99 \mathrm{~g}} 1 \mathrm{~mol}$

20. What is the average atomic mass of neon?

A)	18.184 u
B)	20.124 u
(A)	20.179 u
(D)	20.180 u

21. The average of the total mass of all an element's isotopes is called:
A) the isotopic abundance
B) the weighted average
C) the average molar mass.
(D) the average atomic mass
22. What is the empirical formula for benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$?

A)	$\mathrm{C}_{3} \mathrm{H}_{3}$
B)	$\mathrm{C}_{6} \mathrm{H}_{6}$
C	CH^{2}
D)	$\mathrm{C}_{2} \mathrm{H}_{2}$

23. What is the empirical formula of a compound that is 25.9% nitrogen and 74.1% oxygen?

24. Diethyl oxalate is a solvent that is used in some perfumes. Its empirical formula is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$, and its molecular mas is 146.14 u . What is the molecular formula of diethyl oxalate?
A) $\quad \mathrm{C}_{12} \mathrm{H}_{2} \mathrm{O}_{8}$

D $\quad \begin{array}{ll}\mathrm{B}) & \mathrm{C}_{6} \mathrm{H}_{45} \mathrm{O}_{4} \\ \mathrm{C}) & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{4}\end{array}$
(1) $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$

25. What is the mass percent of water in the compound $\mathrm{BaCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$?
A) 33.3% Asswme 1 mol sample

26. What is the percent composition of phosphorus in ammonium phosphate? ($\left.\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$

A)	63.2%	Assume a 1 mol sample
B)	36.4%	$\% P=\frac{30.97}{28.2 \%} \times 100$
C)	20.09	
(D)	20.8%	

27. A sample of the hydrate of thallium(III) chloride has a mass of 64.5 g . The sample is found to contain 12.1 g of water. What is the formula of the hydrate?
D $\begin{array}{rr}\text { A) } & 11 \mathrm{Cl}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O} \\ \text { B) } & \mathrm{TlCl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\ \text { C) } & \mathrm{TlCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\ \text { (D) } & \mathrm{TlCl}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}\end{array}$
$n_{+1 C_{3}}=\frac{m}{M}$
$=0.169 \mathrm{m.1}$
$n_{+12} O=\frac{m}{m}$
$=\frac{(64.5-12.1)}{310.75}=\frac{12.1}{18.02} \quad 1: 4$
$=\frac{0.671}{0.169}$
28. Consider the following balanced chemical equation $2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{s})$
If 4.12 mol of chlorine react with sodium metal, how many moles of sodium metal are consumed?

B | A) | 23.0 mol | $1 \mathrm{~mol} \mathrm{Cl}_{2}: 2 \mathrm{~mol} \mathrm{Na}$ |
| :---: | :---: | :---: |
| (Bi) | 8.24 mol | 4.12 |
| C) | 4.12 mol | 4 |
| D) | 2.06 mol | |

29. In an experiment, the total mass of all the reactants is 4.20 g . Three products are formed. The masses of two of the products add to 3.65 g . What is the mass of the third product?
$\begin{array}{rr}\text { A) } & 7.85 \mathrm{~g} \\ \text { B) } & 4.20 \mathrm{~g} \\ \text { C) } & 3.65 \mathrm{~g} \\ \text { D) } & 0.55 \mathrm{~g}\end{array}$

$$
4.2-3.65=
$$

30. The results of a precipitation reaction are given below:

Theoretical mass of precipitate $=1.62 \mathrm{~g}$
Mass of filter paper $=0.85 \mathrm{~g}$
Mass of filter paper and dry precipitate $=2.42 \mathrm{~g}$
Calculate the percentage yield for these results.
B $\begin{array}{lll} & \begin{array}{l}\text { A) } \\ \text { B) }\end{array} & 100 \% \\ \text { (3) } & 96.9 \% \\ \text { C) } & 66.9 \% \\ \text { D) } & 52.5 \%\end{array}$

$$
\begin{aligned}
q y & =\frac{A Y}{T Y} \times 100 \\
& =\frac{1.57}{1.62} \times 100
\end{aligned}
$$

$$
\begin{aligned}
A Y & =2.42-0.85 \\
& =1.57
\end{aligned}
$$

31. The percentage yield of a particular reaction needs to be 82% for the reaction to be cost efficient. If the theoretical yield is 950 kg , what does the actual yield need to be?

32. Water has a special type of attraction between its molecules. What is this attraction called?
A) dipole-dipole attraction
(B) hydrogen bonding

B C) ion-ion attraction
D) dipole-ion attraction
34. 67.2 g of copper(II) chloride is dissolved in enough watet temake 250 mL of solution. What is the molar

- concentration of the solution?

35. Which factor does not affect the rate of dissolying?

B| | |
| ---: | :--- |
| B | A) |
| (B) | amount of solvent |
| C) | particle size |
| D) | temperature |

36. Which term describes a substance that is able to conduct electricity in an aqueous solution?
A) miscible

C B) immiscible
(C) electrolyte
D) non-electrolyte
37. What is the general equation for a double displacement reaction?
A) $\quad \mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$
B) $\quad \mathrm{CD} \rightarrow \mathrm{C}+\mathrm{D}$

D C) $\quad A+X Y \rightarrow A Y+X$
(D) $\mathrm{AB}+\mathrm{XY} \rightarrow \mathrm{AY}+\mathrm{XB}$
38. What type of reaction is a precipitation reaction?
A) synthesis reaction

D B) decomposition reaction
() single displacement reaction
39. What are the spectator ions in the following reaction?
$\mathrm{SrCl}_{2}+\mathrm{MgSO}_{4} \rightarrow \mathrm{SrSO}_{4}+\mathrm{MgCl}_{2}$
A) Sr^{22} and Cl^{-}
C. ${ }^{\mathrm{B})} \mathrm{Mg}^{2-}$ and $\mathrm{SO}_{4}{ }^{2}$

In the following unbalanced equation, 2 mol af aluminum sulfate are mixed with an excess of sodium phosphate:

$$
\begin{aligned}
& \text { phosphate: } \\
& \mathrm{Al}_{2}(\mathrm{SO})_{2}+3 \\
& +2 \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow{ }^{3} \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{AlPO}_{4}(\mathrm{~s})
\end{aligned}
$$

How many motes of precipitate are formed?

41. Which oxide is most likely to form a basic solution?

A)	NO
(1)	MgO
C)	SO_{3}
D)	CO_{2}

Which compound is an oxyacid?
A) $\mathrm{H}_{2} \mathrm{~S}$
B) $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}$

D $\begin{array}{ll}\mathrm{C}) & \mathrm{HCl} \\ \text { (D) } & \mathrm{H}_{2} \mathrm{SO}_{3}\end{array}$
43. What should you do when handling acids and bases?
A) Wear gloves.

D B) Wear safety glasses.
(D) Wear gloves, safety glasses, and an apron.
44. If a sealed 1 L jar is cooled, what happens to the gas moleculestox,
(A) They move more slowly.
B) They collide more often with the walls of the jar
A. C) Their vibration increases.
D) They move farther apart.
45. Which statement best accounts for the fact that gases can be easily compressed?
A) Molecules occupy space. 第.
B) The collisions of molecules arelastic.

D C) Molecules of gases are in constantimotion.
ch other
46. A particular gas occupies 15 L at $0^{\circ} \mathrm{C}$. What volume will the gas occupy at $-35^{\circ} \mathrm{C}$, assuming that the pressure

47. What is 筬entas ${ }^{\circ} 5.6 \mathrm{~L}$ of gaseous ammonia, NH_{3}, at STP?

48. The density of a gas is $1.23 \mathrm{~g} / \mathrm{L}$ at STP. What is the molar mass of the gas?

A	(a)	$27.6 \mathrm{~g} / \mathrm{mol}$	$n=\frac{P V}{R T}$	$n=0.04+63$	$m=O$
	B)	$27.6 \mathrm{~g} / \mathrm{mol}$			
	B)	$3.76 \mathrm{~g} / \mathrm{mol}$			
	C)	$37.6 \mathrm{~g} / \mathrm{mol}$			$=1.23$
	D)	$17.6 \mathrm{~g} / \mathrm{mol}$	60	$\frac{1.23}{0.01463}$	

49. Which of the following relationships represent Boyle's Law?

A)	$\mathrm{P} \alpha 1 / \mathrm{T}$
$\mathrm{B})$	$\mathrm{V} \alpha \mathrm{T}$
C	$\mathrm{V} \alpha \mathrm{I} / \mathrm{P}$
$\mathrm{D})$	$\mathrm{P} \alpha \mathrm{T}$

50. 358 Tort is equivalent to \qquad atm?
A) 358 atm
C. $\begin{array}{ll}\text { B) } & 85 \mathrm{~atm} \\ \text { (S) } & 0.471 \mathrm{~atm} \\ \text { D) } & 0.358 \mathrm{~atm}\end{array}$

Part B: Quick 20 marks
Place your answer in the space provided. Rough work is NOT required.
51. The name of the shape of ammonia, NH_{3} is pyramidal
52. In order to have hydrogen bonding which three types of polar bonds must there be? $\mathrm{H}-\mathrm{F}, \mathrm{H}-\mathrm{O}, \mathrm{H}-\mathrm{N}$
53. Magnesium oxide plus water will produce $\operatorname{Mg}(O H)_{2}$ magnesium hydroxide
54. Water, a precipitate, or bubbles are three clues that which type of reaction has occurred? double displacement.
55. What type of solvent would be necessary for carbon tetrachloride to be dissolved? non-polar solvent
56. On a shipment of 10000 kg of oranges, 50 g of mould was found. Express this in ppm. 5 ppm
57. In order to make a 50 mL solution of 0.1 M NaOH , how much of a 2.5 M solution is needed? 0.002 L
58. During a titration, the point at which the indicator changes colour is called the end point
59. The conjugate acid of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$is \qquad $\mathrm{H}_{3} \mathrm{PO}_{4}$
60. A Bronsted-Lowry base is a proton acceptor

61 . What is the pH of a 0.010 M HCl solution? \qquad α

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

62. A compound is found to be $26.12 \% \mathrm{C}, 5.05 \% \mathrm{H}$, and $68.93 \% \mathrm{O}$. What is the empirical formula? $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{8}$

63. Weak intermolecular forces between non-polar molecules are called dispersion forces
64. How much was used in a $12.5 \mathrm{v} / \mathrm{v} \%$ solution that contained 10 mL of solvent? 1.25 mL
65. What is the actual yield in a 72% yield that should have recovered 80 g or product? \qquad 57.6 g
66. A closed cylinder contains $2.0 \mathrm{~mol} \mathrm{O}_{2}, 5 \mathrm{~mol} \mathrm{CO}_{2}$, and $3 \mathrm{~mol} \mathrm{~N}_{2}$. If the total pressure is 1 atm , what is the partial pressure of CO_{2} ? $\quad 0.5 \mathrm{~atm} 3=\frac{5}{10} \mathrm{CO}_{2}=0.5 \times \mathrm{P}_{\text {tot }}$
67. The volume of 1 mol of an ideal gas at STP is \qquad $22.4 \mathrm{~L} / \mathrm{mol}$
68. What is the limiting reactant in a synthesis reaction between 2 mol of silver and 3 mol of chlorine

$$
\text { 56. ppm } \begin{aligned}
& =\frac{m_{\text {solute }}}{m_{\text {potent }}} \times 10^{6} \\
& =\frac{50}{10000000}+10^{6} \\
& =5 \mathrm{ppm}
\end{aligned}
$$

$$
\text { 57. } c_{1} v_{1}=c_{2} v_{2}
$$

$$
V_{1}=\frac{C_{2} v_{2}}{G_{1}}
$$

$$
=\frac{(0.1)(0.05)}{(2.5)}
$$

$$
=0.002 \mathrm{~L}
$$

59. acid
60. Assure a 100 g sample

$$
\begin{aligned}
& \text { 62. Assure a } 100 \mathrm{~g} \text { gamp } n_{0}=\frac{68.93}{16} \\
& \begin{aligned}
n_{C} & =\frac{26.12}{12.01} \quad n_{H}=\frac{5.05}{1.01} n^{H}=\frac{4.308 \mathrm{~m} 10}{2.175} \\
& =\frac{2.175 \mathrm{~mol}}{2.175} \\
& =1: 2.25: 2(\times 4 \\
& 4: 9: 7
\end{aligned}
\end{aligned}
$$

$$
\text { 66. } \begin{aligned}
v_{\text {solute }} & =\left(\frac{(v \text { solution })(v / v \%)}{100}\right. \\
& =\frac{(10)(12.5)}{100} \\
& =1.25 \mathrm{~mL} \\
67, A Y & =\frac{(P y)(T V)}{100} \\
& =\frac{(72)(80)}{100} \\
& =57.6 \%
\end{aligned}
$$

$$
\begin{gathered}
70.2 \mathrm{Ag}(5) \\
2 \mathrm{~mol} \\
\hline \mathrm{Cl} 2(\mathrm{gol})
\end{gathered} \rightarrow 2 \mathrm{AgCl}(\mathrm{~s})
$$

$$
\begin{aligned}
& \frac{2 \text { mol Ag }}{2 \mathrm{~mol}^{2}}: \frac{2 \mathrm{~mol} \mathrm{AgCl}}{x} \\
& x=2 \mathrm{~mol} \mathrm{AgCl} \\
& \frac{1 \mathrm{molCl}}{3 \mathrm{~mol}}: \frac{2 \mathrm{~mol} \mathrm{AgCl}}{x} \\
& x=6 \mathrm{~mol}_{\mathrm{olg}} \mathrm{AgCl}
\end{aligned}
$$

PART C SHORT ANSWER Marks

Answer the following questions in the space provided. Remember to include the equation used and units for all calculations. Show all of your work!
71. Explain what type of solvent would be required in order to make a solution of carbon tetrachloride solution. (3 marks). inon-polar Solvent
\rightarrow like-dissotves like
\rightarrow non polar solute can be dissolved by nonpolar solvents by dispersion forces.
72. Complete the following chart (9 marks)

73. Identify the most reactive metal and non-metal on the periodic table. Explain why each element is the most

74. Write the molecular formulae for each of the following: (5 marks)
non-metal: Fluorine.
metal: Francium
4 lowest I,E, E.E.N.
4. metals want to lose e^{-}
\therefore lowest I.E. allows loss of e^{-}
Writ the molecular e-
loss of e

4 highest I, E, a E.N.
\triangle non-metals want to gaines
\therefore highest EN pulls valence e from other elements to become stable
a) magnesium hydroxide $\mathrm{Mg}(\mathrm{OH})_{2}$ b) potassium sulfite $\mathrm{K}_{2} \mathrm{SO}_{3}$
c) silver iodide
AgI
d) boron tetrabromide BBr_{4}
e) iodic acid HIO_{3} (aq)
75. Write the names for each of the following compounds (5 marks)
a) $\mathrm{H}_{2} \mathrm{SO}_{2}$ ass hypo sulphurous acid
b) $\mathrm{Ca}_{2} \mathrm{C}$ calcium carbide
c) KCl potassinan chloride
d) $\mathrm{Al}_{2} \mathrm{O}_{3}$ aluminum oxide
e) co carbon monoxide
76. Complete the following chemical equations by filling in the blanks or writing out the skeleton equation, as required and balance. (10 marks)
a) $\underset{\text { (complete combustion) }}{2 \mathrm{C}_{12} \mathrm{H}_{26}+3 \mathrm{O}_{2} \rightarrow \frac{24}{1(g)}\left(\mathrm{O}_{2}\right)+{ }^{26} 1_{2} \mathrm{O}(\mathrm{g})}$
b) $\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}_{(a q)}^{-} \xrightarrow{\circ \mathrm{R}} \mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq}}$ (a)
c) $\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
d) Ammonium nitrite decomposes into nitrogen gas and water.

$$
\mathrm{NH} \mathrm{H}_{2} \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

e) Mercury(II)oxide is prepared from its elements.

$$
2 H g(s)+O_{2}(g) \rightarrow 2 \operatorname{Hg} O(s)
$$

f) $\mathrm{BaCl}_{2(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})} \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})$ to $\mathrm{NaCl}(\mathrm{ag})$
g) $\begin{aligned} & 1.6 \\ & \mathrm{Zn}\end{aligned}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Pb}(\mathrm{s})$
h) $\mathrm{Ca}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \quad \mathrm{CaCl}_{2}$ (5)
i) Aluminum metal reacts with zinc sulfate (write out the complete balanced equation)

$$
\begin{aligned}
& 2 \mathrm{Al}^{(5)}+32 \mathrm{NSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})}+32 \mathrm{n}(\mathrm{~s}) \\
& \text { j) } 2 \mathrm{HClO}_{4(\mathrm{aq})}+\mathrm{Ca}(\mathrm{OH})_{2(a q)} \rightarrow \mathrm{H}_{2} \mathrm{O}(9)+\mathrm{Ca}(104) 2(\mathrm{Ca})
\end{aligned}
$$

77. Write the net ionic equation for the reaction between aqueous solutions of barium chloride and sodium sulfate. Be sure to include the state of each reactant and product. (3 marks)

$$
\begin{aligned}
& \left.\mathrm{BaCl}_{2(\mathrm{aq})}+\mathrm{Na}_{2} 504(\mathrm{qq})-\mathrm{FaSOH}_{4} \mathrm{~S}\right)+2 \mathrm{NaCl}(\mathrm{aq}) \\
& \mathrm{Ba}_{(\mathrm{ag})}^{2+}+2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{Na}_{(\mathrm{aq})}^{+}+2 \mathrm{Cl}_{(\mathrm{aq})} \\
& \sqrt{ } / \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{BO}_{4}^{2}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(5)
\end{aligned}
$$

78. Explain the trend for first ionization energy across a period and down a group on the periodic table (4 marks)
 across a period due to more p^{t} in the nucluss, valence e^{-}are pulled more tightly towards the rusleas. Thus, mare energy is required to remove a valence e^{-}
$\int / *$ 1.E. \forall down a group. The size of the energy url increases as you go down a grompoovalence are located further from the ruckus and so less energy is required to remove a valence e^{-}
79. How many milliliters of sodium hydroxide solution are required to neutralize 20 ml of $1.0 \mathrm{~mol} / \mathrm{L}$ acetic acid

$$
\begin{aligned}
& \text { if } 32 \mathrm{~mL} \text { of the same sodium hydroxide solution neutralized } 20 \mathrm{~mL} \text { of } 1.0 \mathrm{~mol} / \mathrm{L} \text { hydrochloric acid? (} 6 \\
& \text { marks) } \\
& \mathrm{NaOH}_{(a q)}+\mathrm{HCH}_{3} \mathrm{CO}_{2}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3}\left(\mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)\right. \\
& \begin{array}{rlrl}
V=? & C .625 & C & =1.0 \mathrm{M} \\
C=0.020 \mathrm{~L} & \frac{1 \mathrm{malHCH} \mathrm{CO}_{2}}{0.02}: \frac{1 \mathrm{molNaOH}}{x} \quad V=\frac{n}{C} \\
& n=C V
\end{array} \\
& \begin{array}{rlrl}
V & =0.020 \mathrm{~L} & \frac{1 \mathrm{mal} H(H)}{0.02}: \frac{1 \mathrm{~mol}}{x} & V=\frac{n}{c} \\
n & =(. V \\
& =(1.0)(0.02) & & x=0.02 \mathrm{~mol} \mathrm{N.0H} \\
& =0.02 \mathrm{~mol} & & =\frac{0.02}{0.625} \\
& & =0.032
\end{array} \\
& =0.032 \mathrm{~L} \\
& \mathcal{V a O H}_{\substack{\text { Nah } \\
V=0.0322}}^{c=?} \\
& n=C V \\
& \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}, \mathrm{O}(\mathrm{e})
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=(1.0)(0.02) \\
=(0.02
\end{array} \\
& x=0,02 \\
& =\frac{0.02}{0.032} \text { vil required } \\
& =0,02 \\
& =0.625
\end{aligned}
$$

80. What is the difference between a strong acid and a weak acid? Can they have the same pH value?
(3 marks)
\checkmark strong aid fully ionizes in water
\checkmark weak acid partially (small) ionizes in user.
Yes, they can have the same pH
81. Using the appropriate gas law, explain why it is important to add air to your car tires in the winter time and sometimes to deflate some air in the summer time (4 marks)
\checkmark Pressure is directly proportioned to temperature
\therefore Ir as temp \downarrow in winter, you should add air to your tires to maintain the proper pressure.
as temp \hat{i} inesumover, you should let some air out to lower the pressure to the appropriate revel.
82. Pryidine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, is a slightly yellow liquid with a nauseating odour. It is flammable and toxic by ingestion and inhations Pyridine is used in the synthesis of vitamins and drugs, and has many other uses in industrial chemistry Determine the percentage composition of pyridine. (5 marks)

$$
\begin{aligned}
& \text { Assume a idol sample }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\frac{60.05 \mathrm{~g}}{79.1 \mathrm{~g}} \times 100 \\
\div 75.92 \% \mathrm{C}
\end{array} \\
& =\frac{5.05}{79.1 \mathrm{~g}} \times 100=\frac{149}{79.1 \mathrm{~g}} \times 100 \\
& =6.38 \% \mathrm{H}^{-} \quad=17.70 \% \mathrm{~N} \\
& \therefore \text { pyridine is } 75,92 \% \mathrm{C}, 6.38 \% \mathrm{H}, \text { i } 17.70 \% \mathrm{~N} \text { by mass }
\end{aligned}
$$

83. Calculate the percentage by mass of water in potassium sulfite dehydrate, $\mathrm{K}_{2} \mathrm{SO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. (4 marks)
$\sqrt{ } \sqrt{ }$ Assume a 1 mol sample

$$
\begin{aligned}
& \int \mathrm{OH} \mathrm{H}_{2} \mathrm{O}=\frac{m_{\mathrm{H}_{2} \mathrm{O}}}{m_{\mathrm{K}_{2} \mathrm{SO}_{3}} \cdot 2 \mathrm{H}_{2} \mathrm{O}} \times 100 \\
& =\frac{36.049}{194.319} \times 100 \\
& J=18.55 \% \\
& \int \begin{array}{ll}
0 \\
o_{2} & \mathrm{~K}_{2}, 2 \mathrm{H}_{2} \mathrm{O} \text { is } 18,55 \% \text { water by mass }
\end{array}
\end{aligned}
$$

84. If the following reaction proceeds with a 75% yield, how much diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$, will be produced when 23.5 g of sodium borohydride, NaBH_{4} reacts with 50.0 g of boron trifluoride, BF_{3} ? (8 marks)

$$
\begin{aligned}
& \frac{3 \mathrm{~mol} \mathrm{NaBH}_{4}}{0.6210 \mathrm{mal}^{2}} \frac{2 \mathrm{~m}_{0}+\mathrm{B}_{2} \mathrm{H}_{6}}{x} \\
& x=0.414 \mathrm{~mol}_{2} \mathrm{H}_{6} \\
& m= \\
& =(0.414)(27.68) \\
& \\
& =11.46 \mathrm{~g} \mathrm{~B}_{2} \mathrm{H}_{6}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1 \mathrm{~mol}_{3} B F_{3}}{0.7374 \mathrm{~mol}}: \frac{2 \mathrm{~mol}_{2} \mathrm{H}_{6}}{x} \\
& x \equiv 1.475 \mathrm{~mol} B_{2} H_{6}
\end{aligned}
$$

$$
\% Y=\frac{A Y}{T Y} \times 100
$$

$$
A Y=\frac{(\% Y)(T Y)}{100}
$$

$$
\begin{aligned}
& =\frac{(75)(11,46)}{100} \\
& =8.59 \mathrm{~g}
\end{aligned}
$$

\therefore in a 75% yield, 8.59 g of $\mathrm{B}_{2} \mathrm{H}_{6}$ should be produced
85. A 3.34 g sample of a hydrate has the formula $\mathrm{SrS}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$, and contains 2.30 g of $\mathrm{SrS}_{2} \mathrm{O}_{3}$. Find the value of x. (10 marks)

\because the formula is $\mathrm{SrS}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& =\frac{(2.30 \mathrm{~g})^{2}}{(199.76 \mathrm{~g} / \mathrm{mol})^{2}} \\
& =\frac{(3.34 \mathrm{~g}-2.30 \mathrm{~g})}{(18.02 \mathrm{~g} / \mathrm{mol})} \\
& \mathcal{V}=\frac{0,01151 \mathrm{~mol} \mathrm{SrS}_{2} \mathrm{O}_{3}}{0.01151 \mathrm{~mol}} \\
& C=\frac{0.05771 \mathrm{~mol}}{0.01151 \mathrm{~mol}}
\end{aligned}
$$

$$
\begin{aligned}
& \int 3 \mathrm{NaBH}_{4(\mathrm{~s})}+\ldots \mathrm{BF}_{3(\mathrm{~g})} \rightarrow 2 \mathrm{~B}_{2} \mathrm{H}_{(\mathrm{gg})}+3 \mathrm{NaF}_{(\mathrm{s})} \\
& m=23.5 \mathrm{~g} \quad m=50 \mathrm{~g} \\
& \Lambda_{\mathrm{NaBH}_{4}}=\frac{m}{m} \quad n_{\mathrm{BF}_{3}}=\frac{m}{m} \\
& =\frac{23.5 \mathrm{~g}}{37.84 \mathrm{~g} \text { mol }}=\frac{50 \mathrm{~g}}{67.81 \mathrm{~g} / \mathrm{mol}} \\
& \checkmark=0.6210 \mathrm{~mol} \mathrm{NaBH}_{4} \quad V=0.7374 \mathrm{~mol} \mathrm{BF}_{3}
\end{aligned}
$$

