SNC 2DI

Periodic Table Worksheet

Name:

- 1. The atomic # for hydrogen is ____ so it has ____ protons.
- 2. Neon is # 10 on the periodic table, so its atomic # is 10 and it has 10 protons. Its atomic mass # is 20.2 (round off to 20); so it must have 20 10 neutrons.
- 3. Aluminum is # 13 on the periodic table, so its atomic # is $\frac{13}{2}$ and it has $\frac{13}{2}$ protons. Its atomic mass # is 26.98 (round to $\frac{24}{2}$); so it must have $\frac{24}{2}$ $\frac{13}{2}$ = $\frac{14}{2}$ neutrons.
- 4. Look up Beryllium on the periodic table. # of protons = $\frac{4}{3}$; p + n = $\frac{9}{3}$; n = $\frac{5}{3}$.
- 5. Since Beryllium has 4 protons, it usually has 4 electrons total.
- 6. Beryllium is in Group 2 (second column) so it has delectrons in its outer shell (valence electrons).
- 7. Beryllium is in Period 2 (second row) so it has 2 electron shells.
- 8. Look up Potassium on the periodic table. # of protons = $\frac{19}{100}$; $p + n = \frac{20}{100}$; $n = \frac{20}{1000}$.
- 9. Since Potassium has 19 protons, it usually has 19 electrons total.
- 10. Potassium is in Group 1 (1 column) so it has electrons in its outer shell (valence electrons).
- 11. Potassium is in Period (4th row) so it has 4 electron shells
- 12. Fill in the chart below (always round off the number for protons + neutrons):

* * * * * * * * * * * * * * * * * * * *	TE	TTO	111	I for	In	T O:	1 37	-	T	
A4	H	He	Li	Be	B	Ca	Xe	As	Al	Au
Atomic#	1	2	3	4	5	20	54	33	13	79
Protons	1	2	3	4	5	20	54	33	13	79
Atomic Mass #	1.01	4.0	6.94	9.01	10.8	40.1	131.3	-	26.9	196.
Protons + Neutrons	1	4	7	9	11	40	131	75	27	197
Neutrons	0	2	4	5	6	20	77	42	14	118
Electrons (if neutral)	1	2	7	4	5	20	54	33	13	79
Group #	ì	8	1	2	3	2	8	5	3	11
Valence Electrons	1	2	1	2	3	2	8	S	3	
Period#	-1	1	2	2	2	4	5	4	3	6
Electron Shells	1	1	2	2	2	4	5	4	3	6

SNC 2DI

Periodic Table Worksheet #2

Name:

1.	Every atom can only have electrons maximum in the first shell.
2.	Every atom can only have electrons maximum in the second shell.
3.	Every atom will only have 3 electrons in the third shell before the fourth shell starts
-	filling up. (Okay, it can actually have 18 total, but after 3 it starts filling up the
	fourth shell for some complicated reason!)
4.	Every atom wants a full outer shell. For most atoms this means 2 valence electrons.
	(This is called a "stable octet".) Some exceptions to the "stable octet" rule are:
	Helium, for a full outer shell it needs only 2 valence electrons; and most elements
	after #20 (Calcium).
5.	Lithium only has 1 valence electron. To get a "stable octet" it could either gain
	electrons or lose 1 electron. (It does the easiest option, so it will definitely lose 1
б.	Beryllium only has a valence electrons. To get a "stable octet" it could either gain
	a electrons or lose a electrons. (It does the easiest option, so it will definitely)
7.	Fluorine only has valence electrons. To get a "stable octet" it could either gain
	lelectron or lose ? electrons. (It does the easiest option, so it will definitely and
R	Fill in the chart below:

	Li	Na	Be	Mg	Al	0	F	CI	He	Ne
Valence Electrons	1	1	2	2	3	6	7	7	3	8
# of e's allowed in outer shell	8	3.	8	8	8	8	8	\$	2	8
# of e's it wants to gain	X	X	X	X	X	2	1	12	0	0
# of e's it wants to lose	1	1	2	2	3	X	X	X	X	X
An element it could partner with well	P	CI	0	S	N	Mg	K	Fr	X	X

Electron Dot: Diagram

Li Na Be Mg. Al . O : F: : CI