# SNC2DI <br> Calculating Magnification Worksheet 

1. Calculate the missing values in the table below:

| Eyepiece Lens | Low Power Objective <br> $(4 \times)$ | Medium Power <br> Objective $(10 \times)$ | High Power <br> Objective $(40 \times)$ |
| :---: | :---: | :---: | :---: |
| $10 \times$ | $40 \times$ | $100 \times$ | $400 \times$ |
| $15 \times$ | $60 \times$ | $150 \times$ | $600 \times$ |

2. Convert the following.
a) $3.3 \mathrm{~mm}=$ $\qquad$ $\mu \mathrm{m}$
(b) $0.78 \mathrm{~mm}=$ $\qquad$ $\mu \mathrm{m}$
$\because 1000$
c) $390 \mu \mathrm{~m}=$ $\qquad$ mm
$\therefore 1000$
d) $4600 \mu \mathrm{~m}=$ $\qquad$ mm
3. Calculate:
a) The medium power field of view for a microscope with:

- eyepiece lens $=10 x$
- low power lens $=5 x$
- medium power lens $=20 x$
- low power field of view $=3.5 \mathrm{~mm}$ ( $=3500 \mathrm{um}$ )

$$
\frac{F V_{m}}{F V_{p}}=\frac{M_{n}}{M P}
$$



$$
=\frac{50(3500)}{200}
$$

b) The high power field of view for a microscope with:

- eyepiece lens $=15 x$
- low power lens $=10 x$
- medium power lens $=20 x$
- high power lens $=50 x$


4. From each diagram below, estimate the size of all objects as specified. Assume the field of view on low power is 4 mm , on medium power is 1.6 mm and on high power is 0.4 mm .
a) Slide of some one celled animals

i) The length of the darker objects

$$
\left.\begin{array}{rl}
\text { est. } & =\frac{F V}{\text { sile }}+\begin{array}{l}
\text { fit } \\
\\
\end{array}=\frac{1.6 \mathrm{~mm}}{2.5 \mathrm{~mm}} \\
& =0.64 \mathrm{~mm}
\end{array}\right\} \begin{aligned}
& \because .64 \mathrm{~mm} \text { or } 640 \mathrm{\mu}
\end{aligned}
$$

ii) The dianeter of the smaller light coloured objects est. $=\frac{\text { FV }}{\text { \#fite }}$

$$
=\frac{1.6 \mathrm{~mm}}{8}
$$

$$
\therefore \text { the est. size is }
$$

Mag: 100 X

$$
\rightarrow 10 \times 10=\text { med. }
$$

b) The width of the human hair shown below.

c) Below is the drawing you did of the cell you saw under your microscope. Calculate the drawing magnification of this diagram using both length and width. Assume that you estimated the length of your cell to be $0.6 \mathrm{~mm}(600 \mathrm{um})$, and the width to be 0.25 mm ( 250 um ).


$$
\begin{aligned}
\begin{array}{c}
\text { Drawing } \\
\text { mag. } \\
\text { length }
\end{array} & =\frac{\text { dimension of all diagram }}{\text { dimension of actual cell }} \\
& =\frac{120000 \mu \mathrm{~m}}{600 \mu \mathrm{~m}} \\
& =200 \mathrm{x}
\end{aligned}
$$

ii) Drawing magnification (width)

Drawing Mag. width

$$
\begin{aligned}
& =\frac{\text { dimension of cell diagram }}{\text { dimension of actual all }} \\
& =\frac{50000 \mathrm{\mu m}}{250 \mathrm{\mu m}} \\
& =200 \text { times }
\end{aligned}
$$

* answers will vary with size of sheet*

