Name: ANSWERS

Matter and Chemical Bonding Practice Test

Part A - True or False (20 marks)

F	or each of the following questions, select "A" our answers to the SCANTRON provided.	for TRUE a	nd "B" fo	or FALSE. T	ransfer	
	John Dalton's major contribution to the atomic model was that all atoms are identical. a) True b) False The gold foil experiment demonstrated that gold	1	doron is in herefore 3 dots.) True	group 13 of its' Lewis dot DFalse	the periodic table an diagram should have	ıd :
	contains densely packed electrons. a) True b False		roup 2 co) True	ntains the mo b False	st reactive metals.	
3,	The number of protons is responsible for the similar chemical and physical properties of elements in the same group? a) True b) False	el a)	lectrons.) True	Therefore, it (b) False	s, 18 neutrons, and has a charge of 2+.	18
4.	Potassium has an average atomic mass of 39.10 u. It has 18 neutrons. a) True b) False	18. 6	True enerally,	b) False as the atomic	n than Chlorine radii of the element	ts
5.	An unknown element has two isotopes 45 and 46 and has an atomic mass of 45.45 u. There is a greater percentage of isotope 46.	(a)	True	b) False	energies increase. non-polar covalent	
6.	a) True (b) False The ability of a substance to be hammered into a	bo	onds is alv True	ways a polar n b False	nolecule.	
	sheet refers to ductility. Malleability a) True (b) False	co <i>0</i> 0	nducts el	ectricity, likel	le in water, and y is malleable and a nd electricity in the	
	The solution fills a 250mL beaker, and the solution is clear is a qualitative observation. (a) True b) False	so	lid state. True		ing discribing in the	
8.	When bread is placed in a toaster and toasted, this is an example of a physical change. a) True b) False	For each o	of the foll	hoice (20 mar lowing question our answers to	ks) s, choose the best the SCANTRON	
	The ancient Greeks believed that all matter was made up of only four elements. a) True b) False	3.13 A	nas = 00000000	???	rsions is correct?	
	All elements in the same period contain the same number of energy levels. (a) True b) False		.3 s 3 x 10 ⁻⁵ m 3000 ms	ıs	ha da b d c n	2
	Calcium belongs to the Alkali metals. a) True b) False	what is	round 2.5 the ansition 5×10^3		two significant digit:	S,

- ficant digits,
 - b) 2.8×10^3
 - c) 2800
 - d) 2900

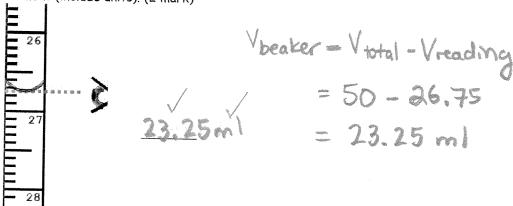
physical properties. (a) True b) False

a) True

12. The oxygen ion would be classified as a cation.

13. Isotopes of the same element can have different

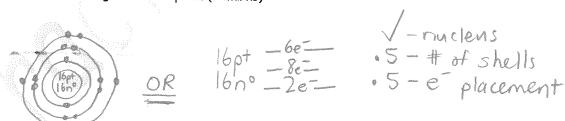
b) False


23. Considering significant digits, what is the correct answer 32. In which pair of elements is the element with the for the following calculation? larger atomic size listed first? 3.954 - 0,03 - 2.6 a) fluorine, oxygen a) 1.324 sodium, magnesium (b) 1.3 c) beryllium, lithium c) 1.32 d) helium, neon d) 1 33. From smallest to biggest place the following atoms in 24. What is the correct answer for the following calculation? terms of ionization energy: 3.654 cm + 2.6 cm x 12.005 L chlorine, fluorine, oxygen, nitrogen. a) $16.872 \text{ cm}^2/\text{L}$ a) Cl, F, O, N b) 16.8 L (b) F, O, N, Cl c) $1.7 \times 10^1 \text{ cm}^2/\text{L}$ c) N, O, F, Cl (d) 1.7×10^{1} L d) O, F, Cl, N 25. The implied uncertainty of a measurement, 3.0×10^8 cm is: 34. A white powder was found to have a high melting a) 0.1 cm point and a low conductivity of electricity when b) 1 cm 3000000000 dissolved with water, the substance can be classified c) 1000000 cm as: (d) 1.0×10^7 cm a) ionic e) 1.0×10^7 cm b) metallic (c) They are liquids at room temperatures covalent 26. Liquid Gatorade is an example of a: d) They have a high malting point alloy 5 a) Mechanical mixture b) Compound 35. Which element is correctly matched to both its group (c) Homogeneous mixture and its period? d) Heterogeneous mixture Element Group Period e) Pure substance a) Si 3 b) Sr 5 2 27. Identify the subatomic particle that has a positive (c) Ga 13 4 charge. d) Pd 10 6 Proton b) Neutron 36. Which molecule is pyramidal? c) Electron CH₄ a) d) Ion Cl2 b) c) H₂S 28. The mass number of magnesium is: a) 12 (b) 24.31 37. Which bond is least polar? c) 24 3,44-2.20 = 1.24 a) H-O (a) I-Br 2.96 - 2.66 = 0.30 (b) F-Cl 3.98 - 3.16 = 0.82 d) +2b) I-Br e) 1.31 d) O-S 3,44-2.58 = 0.86 29. How many electrons, protons, and neutrons are in [³⁸₁₇Cl]⁻¹? 38. Which of the following isotopes do you believe is the a) 17 electrons, 17 protons, and 21 neutrons most common version of tin? b) 18 electrons, 18 protons, and 20 neutrons a) ⁵⁰₅₀Sn (2) 18 electrons, 17 protons, and 21 neutrons 169₅₀Sn b) d) 16 electrons, 17 protons, and 21 neutrons 118₅₀Sn c) ¹¹⁹50Sn (d)30. Which ion is isoelectric with argon? ⁶⁹50Sn (a) CI-1 b) Mg²⁺ 39. During pure covalent bonding, electrons are... c) Br⁻¹ shared equally between two non-metal atoms d) Na⁺¹ b) shared unequally between two non-metal atoms e) A1+3 c) free to move within an electron pool around positively charged metal atoms 31. An element has a high negative electron affinity and a d) pulled from one atom to another to create anions high first ionization energy. What is it most likely to be? and cations (a) A halogen b) An alkali metal 40. Ionization energy is a measure of _ c) A noble gas a) the ion-forming ability of an atom d) A Group 16 (VIA) element b) the electron-attracting ability of an atom c) the electron-repelling ability of an atom

(d) the energy needed to remove an outer electron

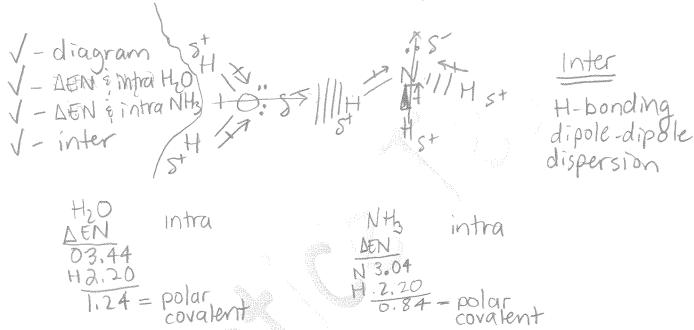
Part C - Short Answer (35 marks)

Answer the following questions in the space provided.


41. Record the volume of liquid in the 50 ml burette to an appropriate precision for the calibration of the instrument (include units). (2 mark)

42. Name the following pieces of lab equipment in the space provided. (2 marks)

- a) <u>Erlenmeyer</u>
- 43. Draw the Bohr-Rutherford diagram for sulphur. (2 marks)


44. Calculate the average atomic mass of nickel if it has five isotopes with the following abundances: (3)

Isotope	Relative abundance
Ni-58	68.1%
Ni-60	26.3%
Ni-61	1.1%
Ni-62	3.6%
Ni-64	0.9%

avg. atomic = (m Ni-58)(%Ni-58) + (m Ni-60)(%Ni-66) + (mNi-61)(%Ni-61) + (mNi-62)(%Ni-62) + (mNi-62)(%Ni-6

reniga	n how and why atomic size changes as you move across a period and down a group in the ic Table. (2 marks)
10	Across a period atomic size & due to #ptt 1. in nucleus which causes Zefftot thus pulling valence e closer = smaller size.
V •	Down a group atoms get bigger as the valence e-

46. With use of a diagram, NAME and DRAW the intermolecular and intramolecular forces involved between a water molecule, H_2O and ammonia, NH_3 (4 marks).

47. Using electronegativity values, determine the type of bond (ionic, pure, non-polar or polar) that exists between the following atoms. Show your ΔEN calculations. (4 marks)

Compound	Lewis Diagram	3-D Structural Formula (show partial charges if present)	Name of Molecular Shape	
Cl ₂	:C1 - C1:	; CI - CI:	linear	(polar/non) ron-polar molecul
SiSe ₂	ΔΕΝ C13.16 C13.16			
	Se = $Si = Se$	5 : 4 St :: 5 Se Se Si = Se	linear	non-polar motecule
	AEN Se 2,55 Si 1,90 0,65			
	S St C AS = C. S. I. U. S. I.	Si HAS Si: CI III AS Si: CI:	pyramidal	polar moleuile
6F2	SEN = 3.98 7.40	F.S.	bent	polar