Name: ANSWERS BCI SCIENCE Matter and Qualitative Analysis Review SCH 4CI A. Fill in the blanks (use the following list) applied chemistry chemistry covalent bond combustion conductivity decomposition dipole-dipole dispersion dissociate double displacement intermolecular forces electronegativity frequency inference ground state ionic bond Lewis structure line spectrum matter model observation net ionic equation non-polar molecule polar molecule pure chemistry qualitative single displacement solubility solubility table spectator ion total ionic equation stable octet synthesis theory visible spectrum wavelength 1. A statement based on your five senses is referred to as a(n) __OBSERVATION_ 2. _LEWIS STRUCTURE__ is a representation of covalent bonding using dot diagrams with shared electron pairs shown as lines and lone pairs shown as dots. The number of cycles of light waves that pass a point in one second is called __FREQUENCY__. 4. _APPLIED CHEMISTRY__ is the use of chemistry for practical purposes. 5. An electron found in its lowest possible energy level is said to be in its' __GROUND STATE_ 6. _QUALITATIVE_ analysis is the process of determining the composition of a sample from its physical and chemical properties. A _LINE SPECTRUM_ is produced when light is emitted by an element and then directed through a diffraction 8. Light waves with a wave length of 400 nm to 700 nm with which the human eye can detect is known as the __VISIBLE SPECTRUM_ A(n) _INFERENCE____ is a judgment or opinion that is based on an observation. 10. All molecules experience __DISPERSION___ intermolecular forces. B. True or False (If the statement is false, rewrite the statement to make it true) 11. A polar molecule must have at least one polar covalent bond and be symmetrical in shape. **ASYMMETRICAL** 12. A tetrahedral shape has four bonded atoms and no lone pairs around the central atom. A pyramidal shape has two bonded atoms and two lone pairs around the central atom. 14. Dipole-dipole forces exist between non-polar molecules.

17. In order to determine the products of a double displacement reaction, you must refer to the electronegativity

SOLUBILITY TABLE

POLAR

In a single displacement reaction, a metal will displace a cation in a compound.

TOTAL

19. Complete combustion of a hydrocarbon makes $CO_{2(q)}$ and $H_2O_{(q)}$

PURE

18. A \triangle EN value of zero indicates a non-polar covalent bond.

20. Ionic compounds will dissociate when dissolved in water.

16. Spectator ions appear in a net ionic equation.

T

T

F

F

T

chart.

imilarities/Differences (describe similarities/difference). 1. empirical knowledge / theoretical knowledge K: knowledge coming directly from observations K: knowledge based on ideas that are created to explain observations.		19. Continuous spectrum / line spectrum CS: uninterrupted pattern of colours that are observed when a narrow beam of white light passes through a prisim LS: discontinuous spectrum that is produced when light is emitted by an element is directed through diffraction		
20. ground state / excited state GS: electrons in their lowest possible energy lefts: electrons that have been energized and he moved to higher energy levels.		gratting 21. ionic bond / covalent bond IB: electrons are lost/gained by metals & non-metals to become stable. Cations and Anions are formed.		
 22. cation / anion C: positive ion formed from losing electron(s), usually a metal. A: negative ion formed from gaining electron(s), usually a non-metal. 		23. polar covalent bond / pure covalent bond Polar: unequal sharing of electrons in a covalent bond. ΔEN difference between 0.4-1.7. Partial charges and dipole-moments are required on the diagram. Pure: equal sharing of electrons in a covalent bond.		
 C. Multiple choice (Choose the best ans 24. Which of the following was contributed to at a) Raisin Bun Model b) Discovery of the proton 	tomic theo	very of the neutron		
25. What 3-D shape does carbon tetrahydride, Cla) linearb) bent	H ₄ , have? c) pyram d) tetra			
26. The ΔEN for a carbon - hydrogen bond is a) 0 b) 0.35	c) 0.84 d) 1.26			
27. A carbon - hydrogen bond would havea) partial chargesb) partial charges and dipole moments		e brackets with full charges arges at all		
28. The shape of SiO₂ is a) linear b) pyramidal	c) v-shap d) tetral			
29. The shape of PF ₃ is a) linear b) pyramidal	c) v-shap d) tetral			
30. The ΔEN for a non-polar covalent bond is a) 0 b) 1.7 - 0.4	c) 3.3 - 1 d) 0.1 -			
31. The number of electrons in ²⁷ ₁₃ Al ³⁺ is a) 27 b) 13	c) 14 d) 10			

E. Drawing

32. Complete the following table.

Million Co. of Street, or other party of	Lewis Structure	3-D Diagram (include partial charges and dipole moments)	Name of Shape	Polar or non-polar molecule
<u>ΔEN</u> Cl 3.16 Si 1.90 1.26	: C1: : C1: : C1 = S1 = C1: It	:C1: 17 S:C1 At C1: 5	tetrahedral	non- polar
CO₂ ΔEN O 3.44 C 2.55 O.89	5° et 5++7.5° 0 = C = 0	5.45+7.5° 0=C=0	linear	non- polar
H₂S ΔEN 5 2.58 H 2.20 0.38	st s st H-5-H	st H st	bent	non- polar
PI ₃ ΔΕΝ I 2.66 P 2.19 0.47	s, 4 st s s, 4 st s I - P - I: It It S	S'IMPXIIS- SIIII	pyramidal	polar

F. Diagrams

33. Draw a Bohr-Rutherford Diagram for nitrogen.

34. a. Using Lewis dot diagrams, show the bonding between aluminum and oxygen.

b. List three physical properties you would expect for aluminum oxide.

- high multing point - conducts electricity in water - white crystalline solid

35. Using Lewis dot diagrams, show the bonding between carbon and bromine. Make sure to include partial charges.

· C· + · Br· -> s · Br · Oct

- 36. Write a) molecular equations, b) total ionic equations, and c) net ionic equations for the following word equations. ** include states from your solubility table**
- Aqueous barium nitrate plus aqueous sodium sulphate yields barium sulphate and sodium nitrate. i)

a) $Ba(NO_3)_{2(aq)} + Na_2SO_{4(aq)} \cdot BaSO_{4(s)} + 2NaNO_{3(aq)}$

b) $Ba^{2+}_{(aq)} + 2NO_3^{-1}_{(aq)} + 2Na^{+1}_{(aq)} + SO_4^{2-}_{(aq)} \cdot BaSO_{4(s)} + 2Na^{+1}_{(aq)} + 2NO_3^{-1}_{(aq)}$

c) $Ba^{2^{+}}(aq) + SO_{4}^{2^{-}}(aq) \cdot BaSO_{4(s)}$

Aqueous magnesium chloride plus aqueous sodium hydroxide yields magnesium hydroxide and sodium chloride.

a) $MgCl_{2(aq)} + 2NaOH_{(aq)} \cdot Mg(OH)_{2(s)} + 2NaCl_{(aq)}$

b) $Mg^{2^+}_{(aq)} + 2Cl^{-1}_{(aq)} + 2Na^{+1}_{(aq)} + 2OH^{-1}_{(aq)} \cdot Mg(OH)_{2(s)} + 2Na^{+1}_{(aq)} + 2Cl^{-1}_{(aq)}$

c) $Mg^{2*}_{(aq)} + 2OH^{-1}_{(aq)} \cdot Mg(OH)_{2(s)}$