Name: ANSWERS BCI SCIENCE Matter and Qualitative Analysis Review SCH 4CI A. Fill in the blanks (use the following list) applied chemistry chemistry covalent bond combustion conductivity decomposition dipole-dipole dispersion dissociate double displacement intermolecular forces electronegativity frequency inference ground state ionic bond Lewis structure line spectrum matter model observation net ionic equation non-polar molecule polar molecule pure chemistry qualitative single displacement solubility solubility table spectator ion total ionic equation stable octet synthesis theory visible spectrum wavelength 1. A statement based on your five senses is referred to as a(n) __OBSERVATION_ 2. _LEWIS STRUCTURE__ is a representation of covalent bonding using dot diagrams with shared electron pairs shown as lines and lone pairs shown as dots. The number of cycles of light waves that pass a point in one second is called __FREQUENCY__. 4. _APPLIED CHEMISTRY__ is the use of chemistry for practical purposes. 5. An electron found in its lowest possible energy level is said to be in its' __GROUND STATE_ 6. _QUALITATIVE_ analysis is the process of determining the composition of a sample from its physical and chemical properties. A _LINE SPECTRUM_ is produced when light is emitted by an element and then directed through a diffraction 8. Light waves with a wave length of 400 nm to 700 nm with which the human eye can detect is known as the __VISIBLE SPECTRUM_ A(n) _INFERENCE____ is a judgment or opinion that is based on an observation. 10. All molecules experience __DISPERSION___ intermolecular forces. B. True or False (If the statement is false, rewrite the statement to make it true) 11. A polar molecule must have at least one polar covalent bond and be symmetrical in shape. **ASYMMETRICAL** 12. A tetrahedral shape has four bonded atoms and no lone pairs around the central atom. A pyramidal shape has two bonded atoms and two lone pairs around the central atom. 14. Dipole-dipole forces exist between non-polar molecules. 17. In order to determine the products of a double displacement reaction, you must refer to the electronegativity SOLUBILITY TABLE POLAR In a single displacement reaction, a metal will displace a cation in a compound. TOTAL 19. Complete combustion of a hydrocarbon makes $CO_{2(q)}$ and $H_2O_{(q)}$ **PURE** 18. A \triangle EN value of zero indicates a non-polar covalent bond. 20. Ionic compounds will dissociate when dissolved in water. 16. Spectator ions appear in a net ionic equation. T T F F T chart. | imilarities/Differences (describe similarities/difference). 1. empirical knowledge / theoretical knowledge K: knowledge coming directly from observations K: knowledge based on ideas that are created to explain observations. | | 19. Continuous spectrum / line spectrum CS: uninterrupted pattern of colours that are observed when a narrow beam of white light passes through a prisim LS: discontinuous spectrum that is produced when light is emitted by an element is directed through diffraction | | | |---|--|--|--|--| | 20. ground state / excited state GS: electrons in their lowest possible energy lefts: electrons that have been energized and he moved to higher energy levels. | | gratting 21. ionic bond / covalent bond IB: electrons are lost/gained by metals & non-metals to become stable. Cations and Anions are formed. | | | | 22. cation / anion C: positive ion formed from losing electron(s), usually a metal. A: negative ion formed from gaining electron(s), usually a non-metal. | | 23. polar covalent bond / pure covalent bond Polar: unequal sharing of electrons in a covalent bond. ΔEN difference between 0.4-1.7. Partial charges and dipole-moments are required on the diagram. Pure: equal sharing of electrons in a covalent bond. | | | | C. Multiple choice (Choose the best ans 24. Which of the following was contributed to at a) Raisin Bun Model b) Discovery of the proton | tomic theo | very of the neutron | | | | 25. What 3-D shape does carbon tetrahydride, Cla) linearb) bent | H ₄ , have?
c) pyram
d) tetra | | | | | 26. The ΔEN for a carbon - hydrogen bond is a) 0 b) 0.35 | c) 0.84
d) 1.26 | | | | | 27. A carbon - hydrogen bond would havea) partial chargesb) partial charges and dipole moments | | e brackets with full charges
arges at all | | | | 28. The shape of SiO₂ is a) linear b) pyramidal | c) v-shap
d) tetral | | | | | 29. The shape of PF ₃ is a) linear b) pyramidal | c) v-shap
d) tetral | | | | | 30. The ΔEN for a non-polar covalent bond is a) 0 b) 1.7 - 0.4 | c) 3.3 - 1
d) 0.1 - | | | | | 31. The number of electrons in ²⁷ ₁₃ Al ³⁺ is a) 27 b) 13 | c) 14
d) 10 | | | | ## E. Drawing 32. Complete the following table. | Million Co. of Street, or other party of | Lewis Structure | 3-D Diagram (include partial charges and dipole moments) | Name of Shape | Polar or
non-polar
molecule | |--|---|--|---------------|-----------------------------------| | <u>ΔEN</u>
Cl 3.16
Si 1.90
1.26 | : C1:
: C1:
: C1 = S1 = C1:
It | :C1:
17
S:C1 At C1: 5 | tetrahedral | non-
polar | | CO₂
ΔEN
O 3.44
C 2.55
O.89 | 5° et 5++7.5°
0 = C = 0 | 5.45+7.5°
0=C=0 | linear | non-
polar | | H₂S
ΔEN
5 2.58
H 2.20
0.38 | st s st
H-5-H | st H st | bent | non-
polar | | PI ₃ ΔΕΝ I 2.66 P 2.19 0.47 | s, 4 st s
s, 4 st s
I - P - I: It It S | S'IMPXIIS-
SIIII | pyramidal | polar | ## F. Diagrams 33. Draw a Bohr-Rutherford Diagram for nitrogen. 34. a. Using Lewis dot diagrams, show the bonding between aluminum and oxygen. b. List three physical properties you would expect for aluminum oxide. - high multing point - conducts electricity in water - white crystalline solid 35. Using Lewis dot diagrams, show the bonding between carbon and bromine. Make sure to include partial charges. · C· + · Br· -> s · Br · Oct - 36. Write a) molecular equations, b) total ionic equations, and c) net ionic equations for the following word equations. ** include states from your solubility table** - Aqueous barium nitrate plus aqueous sodium sulphate yields barium sulphate and sodium nitrate. i) a) $Ba(NO_3)_{2(aq)} + Na_2SO_{4(aq)} \cdot BaSO_{4(s)} + 2NaNO_{3(aq)}$ b) $Ba^{2+}_{(aq)} + 2NO_3^{-1}_{(aq)} + 2Na^{+1}_{(aq)} + SO_4^{2-}_{(aq)} \cdot BaSO_{4(s)} + 2Na^{+1}_{(aq)} + 2NO_3^{-1}_{(aq)}$ c) $Ba^{2^{+}}(aq) + SO_{4}^{2^{-}}(aq) \cdot BaSO_{4(s)}$ Aqueous magnesium chloride plus aqueous sodium hydroxide yields magnesium hydroxide and sodium chloride. a) $MgCl_{2(aq)} + 2NaOH_{(aq)} \cdot Mg(OH)_{2(s)} + 2NaCl_{(aq)}$ b) $Mg^{2^+}_{(aq)} + 2Cl^{-1}_{(aq)} + 2Na^{+1}_{(aq)} + 2OH^{-1}_{(aq)} \cdot Mg(OH)_{2(s)} + 2Na^{+1}_{(aq)} + 2Cl^{-1}_{(aq)}$ c) $Mg^{2*}_{(aq)} + 2OH^{-1}_{(aq)} \cdot Mg(OH)_{2(s)}$