- **11. a.** The minimum kinetic energy required for a collision to result in a reaction between reactant particles.
 - **b.** Only the collisions with a kinetic energy equal to or greater than $E_{\rm a}$ will result in a reaction. For a reaction at room temperature with a high $E_{\rm a}$, there will be few particles having sufficient energy to overcome the energy barrier when they collide.
- whether the reaction is endothermic or exothermic are three characteristics of a reaction that you can determine from a potential energy diagram. The enthalpy change is the difference between the initial (reactant) and final (product) potential energies. The activation energy is the difference between the initial potential energy and the maximum potential energy. The relative values of the potential energy of the reactants and products indicate whether it is an endothermic or exothermic reaction.

(Student textbook page 369)

- **13.** The greater the activation energy, the slower the rate; the lower the activation energy, the faster the rate
- **14. a.** The flame increases the energy of a few reactant particles so that when collisions occur, the reactant particles have energy equal to or greater than the activation energy. After a few successful collisions occur, the reaction itself releases enough energy to provide energy for the rest of the particles to react.
 - **b.** Combustion reactions such as the burning of natural gas are exothermic processes. The thermal energy given off provides the energy for further particles to react
- **15.** The thermochemical equation does not show the activation energy, which you would expect to be high, since graphite does not spontaneously change to diamond. Graphite and diamond have different arrangements of carbon atoms. Although the overall energy difference is small, to make the change, carboncarbon bonds would need be broken and the atoms re-arranged.
- **16. a.** An activated complex is an unstable, temporary chemical species formed of the reactant and product; it will break apart either to form the product(s) or reform the reactants.
 - **b.** The nitrogen atom in the NO collides with an oxygen atom in the NO₃. Student sketches should show dotted lines indicating new bonds forming between the N of NO and the O of NO₃ and dotted lines indicating the breaking of bonds between the O and N of NO₃.

- **17.** Exothermic; $\Delta H = E_{a(\text{fwd})} E_{a(\text{rev})} = 45 \text{ kJ} 50 \text{ kJ}$ = -5 kJ
- **18.** Since the reverse of the reaction shown is endothermic, student sketches should indicate the product (carbon disulfide) with higher potential energy than the reactants (carbon and sulfur); the difference between the two values is 89 kJ.

(Student textbook page 374)

- **19.** Any change that increases the number of collisions between reactant particles will increase the rate of reaction. Any change that decreases the number of collisions between reactant particles will decrease the rate of reaction.
- **20.** Factors that can alter the rate of a chemical reaction include a change in the nature of the reactant(s); a change in the concentration of the reactant(s); a change in temperature; a change in pressure, if the reactants are gases; a change in the total surface area of the reactant material; and the introduction of a catalyst.
- **21.** Only collisions having kinetic energy equal to or exceeding the activation energy will lead to formation of product. At lower temperatures, there are fewer reactant particles with sufficient kinetic energy and the rate of reaction is slower.
- **22.** Sample answer: The rate of rusting would be slowed down by reducing the number of collisions between Fe(s) and $O_2(g)$. Decreasing the temperature and covering the iron with a protective coating would be two ways to accomplish this.
- 23. Sawdust and bulk plant material have a larger total exposed surface area than the pellets and there will be many more collisions between reactant particles. As successful collisions occur, heat is given off, which rapidly leads to more collisions between particles having kinetic energy greater than the activation energy. The result is a rapid, uncontrollable, and possibly explosive combustion. This is not desirable for a fuel. It is more important for fuels to burn slowly so that the heat from this burning can be distributed for a required use. Moreover, when the size and density of the pellets are consistent, the rate of the reaction will not only be smaller but also more predictable, so that the energy produced over time can be determined, assuming the materials of which the pellets are made burn at a consistent rate.
- **24.** *Sample answer*: Since the temperature is already high, an increase in temperature would not be expected to have much effect. The high temperature suggests that