CONCENTRATIONS OF SOLUTIONS ASSIGNMENT

ANSWERS

1. $\sqrt{\text{m/m}} = \frac{\text{mass of solute (g)}}{\text{mass of solution (g)}} \times 100$

 $\sqrt{\text{m}} = \frac{5.62 \text{g}}{250 \text{g}} \times 100$

 $\sqrt{\text{m}} = 2.25\%$

 \therefore the solution is 2.25% boric acid m/m.

2. $\text{m/V} = \frac{\text{mass of solute (g)}}{\text{volume of solution (ml)}} \times 100$

 $\text{m/V} = \frac{25.0 \text{g}}{775 \text{ml}} \times 100$

 $\text{m/V} = 3.23\%$

 \therefore the solution is 3.23% m/V NaCl.

3. $\sqrt{\text{V/V}} = \frac{\text{volume of solute (ml)}}{\text{volume of solution (ml)}} \times 100$

 $\text{volume of solute} = \frac{(\text{V/V}) \times (\text{volume of solution})}{100}$

 $\text{volume of solute} = \frac{(12)(800)}{100}$

 $\sqrt{\text{V/V}} = 96 \text{ml of ethanol}$

 $V_{H_2O} = V_{\text{solution}} - V_{\text{solute}}$

 $V_{H_2O} = 800 \text{ml} - 96 \text{ml}$

 $\sqrt{\text{V}} = 704 \text{ml}$

 $\sqrt{\%} 704 \text{ ml of water is required to make a 12% V/V 800ml sol'n
4. \[\text{ppm} = \frac{\text{mass of solute (g)}}{\text{mass of solution (g)}} \times 10^6 \]

\[= \frac{0.5 \text{ g}}{1000 \text{ g}} \times 10^6 \]

\[= 500 \text{ ppm} \]

\(\therefore 500 \text{ mg/L represents 500 ppm of CaCO}_3. \)

5. \[n = CV \]

\[= (0.2 \text{ mol/L})(0.4 \text{ L}) \]

\[= 0.08 \text{ mol Al}_2(\text{SO}_4)_3 \]

\[m = nM \]

\[= (0.08 \text{ mol})(342.14 \text{ g/mol}) \]

\[= 27.4 \text{ g} \]

\(\therefore 27.4 \text{ g of Al}_2(\text{SO}_4)_3 \text{ is required to make a 0.2 M 400 mL sol'n} \)

6. \[\sqrt{n} = \frac{m}{M} \]

\[\sqrt{=} \frac{24 \text{ g}}{40 \text{ g/mol}} \]

\[\sqrt{=} 0.6 \text{ mol NaOH} \]

\[\sqrt{C} = \frac{n}{V} \]

\[= \frac{0.6 \text{ mol}}{0.5 \text{ L}} \]

\[\sqrt{=} 1.2 \text{ mol/L} \]

\(\therefore \) the molarity is 1.2 mol/L.
\[n = \frac{m}{M} \]
\[M_{\text{Na}_2\text{CO}_3} = 105.99 \text{ g/mol} \]
\[n = \left(\frac{140.0 \text{ g}}{105.99 \text{ g/mol}} \right) \]
\[= 1.32 \text{ mol Na}_2\text{CO}_3 \]

\[V = \frac{n}{c} \]
\[= \frac{(1.32 \text{ mol})}{(0.4 \text{ mol/L})} \]
\[= 3.3 \text{ L} \]

\[\therefore 3.3 \text{ L of solution can be made.} \]

8. \[n = cv \]
\[= (0.120 \text{ M})(0.35 \text{ L}) \]
\[= 0.042 \text{ mol AgNO}_3 \]

\[N = nNA \]
\[= (0.042 \text{ mol})(6.02 \times 10^{23} \text{ formula units/mol}) \]
\[= 2.53 \times 10^{22} \text{ formula units} \]

\[\therefore 2.53 \times 10^{22} \text{ formula units} \] are required to make 350 mL 0.12 M solution.

9. \[n = cv \]
\[= (0.30 \text{ mol/L})(0.80 \text{ L}) \]
\[= 0.24 \text{ mol Li}_2\text{SO}_4 \]

\[m = nM \]
\[= (0.24 \text{ mol})(109.94 \text{ g/mol}) \]
\[= 26.4 \text{ g} \]

\[\therefore 26.4 \text{ g of Li}_2\text{SO}_4 \text{ will be obtained.} \]
\[10. \sqrt{\text{v/v}\%} = \frac{\text{volume of solute (ml)}}{\text{volume of solution (ml)}} \times 100 \]

\[\text{volume of solute} = \left(\frac{\text{v/v}\%}{100} \right) \times (\text{volume of solution}) \]

\[= \left(\frac{60}{20} \right) \frac{100}{100} \]

\[\sqrt{m} = 12 \text{ ml} \]

\[\sqrt{m} = 0V \\
\sqrt{m} = (1.61 \text{g/ml})(12 \text{ ml}) \\
\sqrt{m} = 19.33 \text{ g} \]

\[n = \frac{m}{M} \]

\[= \frac{19.33 \text{ g}}{98.08 \text{ g/mol}} \]

\[\sqrt{n} = 0.197 \text{ mol} \]

\[C = \frac{n}{V} \]

\[= \frac{0.197 \text{ mol}}{0.05 \text{L}} \]

\[\sqrt{C} = 3.99 \text{ M} \text{ mol/L} \]

\[\therefore \text{ the molarity of the solution is } 3.99 \text{ M mol/L}. \]