

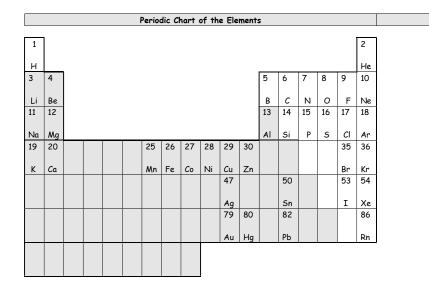
Physical Change -

Chemical Change -

Five Clues that a Chemical Change has occurred:

- 1.
- 2.
- 3. 4.
- 5.

An Introduction to the Periodic Table


During the mid 1800's, Russian sc periodic table after noticing a rel	lationship between the	and
of the elements At the time of	-	-
The modern periodic table, which	is comprised of over	elements,
of which are naturally occurring,	is organized by	and makes
use of element	_ that are the same throu	ughout the entire world.
Metals are located on the	and throughou	it the of the
Periodic Table. Metals are one kir	nd of element that have c	ertain in
common,,		
All metals are		
		J
Non-metals are located on the		of the Periodic Table.
Non-metals are, not		
conductors of and		
or		
A division line known as the "	" separates m	etals and non-metals. On
either side of the staircase are a	•	
that show		
The name for each	row of the Periodic	Table is a .
There are period		
The columns in	n the periodic table are c	alled

and range from 1-18 (these are typically written as Roman Numerals). Some groups are given special names because they form a _____ of elements with

There are four families within the periodic table:

Group 1 -Group 2 -Group 17 -Group 18 -

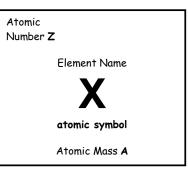
Atoms and Their Composition

Elements are the basic substances that make up all ____

An atom is the smallest particle of an element that still retains the _____ and ____ and _____ of the element.

Atoms are made up of even smaller particles. These ______ particles are _____, _____ and ______.

Protons and neutrons make-up the ______ or core of an atom and contribute to the ______ of an atom, while electrons are ______ and occupy the ______ that surround the nucleus of the atom (______). Electrons are so ______ and _____ that they essentially contribute no overall weight to the atom.


Subatomic Particle	Charge	Symbol	Mass (g)	Radius (m)
Electron			9.02×10 ⁻²⁸	Smaller than 10 ⁻¹⁸
Proton			1.67×10 ⁻²⁴	10 ⁻¹⁵
Neutron			1.67×10 ⁻²⁴	10-15

Since subatomic particles are so light, chemists use a unit called an ______ for their measurement. Both protons and neutrons have a mass of ______.

Every Element has a unique:

- Name
- Symbol
- Atomic number (Z)

• Atomic Mass (A)

. .

The of an atom can be determined by the on the Periodic Table.	How to Draw Atoms
Examples:	Draw Bohr-Rutherford Diagrams
17 18 Cl N 35.45 14.01	Ernest Rutherford and Niels Bohr developed the planetary model of the in 1913. In this model, the nucleus, containing the and, takes the central place just like the Sun takes the central place in our solar system. The electrons spin around the nucleus in orbits similar to the path of the planets around the Sun. The orbits represent the different amounts of that the can have.
Mass Number:	Electrons in the first orbit have the energy, whereas electrons in the last orbital have the energy. The first orbit holds up to electrons. The second and third orbits contain up to electrons. As you fill the orbits, always fill the energy orbit first, then fill up the next one and the next and so on.
We can use this information to calculate the number of neutrons by means of the following equation:	When you draw Bohr-Rutherford diagrams of an element, you identify the of and in the centre of the atom and place to represent the in their orbits. Since electrons have a charge, and according the law of,
Number of neutrons =	charged particles and charges; you must place the first electrons in the orbit as far apart as possible. For reasons beyond the scope of this course, the next electrons in the orbit (if there are any) pair up with the electrons already there.
Examples:	Step 1: Determine the number of protons
L'Authores.	
L'Aunpress	This is equal to the atomic number of the element
	This is equal to the atomic number of the element Step 2: Determine the number of electrons
You will notice that an element reports an (a decimal number) instead of a mass number on the Periodic Table. The atomic mass represents a ""	Step 2: Determine the number of electrons
You will notice that an element reports an (a decimal number) instead of	Step 2: Determine the number of electrons This is equal to the number of protons.
You will notice that an element reports an (a decimal number) instead of a mass number on the Periodic Table. The atomic mass represents a "" of all the for a particular atom. Isotopes are atoms of an element that have the same number of in their	Step 2: Determine the number of electrons This is equal to the number of protons. Step 3: Determine the number of neutrons. Subtract the atomic number (Z) from the mass number (M) of the element. Just a reminder that the mass number is
You will notice that an element reports an (a decimal number) instead of a mass number on the Periodic Table. The atomic mass represents a "" of all the for a particular atom. Isotopes are atoms of an element that have the same number of in their nucleus, but a different number of	 Step 2: Determine the number of electrons This is equal to the number of protons. Step 3: Determine the number of neutrons. Subtract the atomic number (Z) from the mass number (M) of the element. Just a reminder that the mass number is the
You will notice that an element reports an (a decimal number) instead of a mass number on the Periodic Table. The atomic mass represents a "" of all the for a particular atom. Isotopes are atoms of an element that have the same number of in their	Step 2: Determine the number of electrons This is equal to the number of protons. Step 3: Determine the number of neutrons. Subtract the atomic number (Z) from the mass number (M) of the element. Just a reminder that the mass number is the rounded to the nearest Step 4: Draw a nucleus and write in the number of protons and neutrons. Step 5: Draw electron shells around the nucleus and fill them with the appropriate number of electrons. Always fill
You will notice that an element reports an	Step 2: Determine the number of electrons This is equal to the number of protons. Step 3: Determine the number of neutrons. Subtract the atomic number (Z) from the mass number (M) of the element. Just a reminder that the mass number is the rounded to the nearest Step 4: Draw a nucleus and write in the number of protons and neutrons. Step 5: Draw electron shells around the nucleus and fill them with the appropriate number of electrons. Always fill
You will notice that an element reports an (a decimal number) instead of a mass number on the Periodic Table. The atomic mass represents a "" of all the for a particular atom. Isotopes are atoms of an element that have the same number of in their nucleus, but a different number of Isotopes have very similar properties, but they differ in properties.	Step 2: Determine the number of electrons This is equal to the number of protons. Step 3: Determine the number of neutrons. Subtract the atomic number (Z) from the mass number (M) of the element. Just a reminder that the mass number is the

Classifying Chemical Compounds

A compound is a ______ composed of two or more elements, chemically bonded in fixed proportions. Chemical bonds are ______ that ______ atoms to each other. Bonding involves the interaction between the ______ of atoms and is the driving force of ______.

While there are only ______ naturally occurring elements, there are ______ of different compounds. To help organize these compounds, chemists classify them into two main groups based on the ______ of bond that they form, and according to their ______.

Ionic Bond

A chemical bond between ______ charged ions that arise from the ______ of _____ of _____ It usually involves a ______ and a ______.

Covalent Bond

A chemical bond in which ______ are _____ by two atoms. It usually involves two ______.

Comparing Ionic and Covalent Compounds

Property	Ionic Compound	Covalent Compound
State at room		
temperature		
Melting point		
Electrical conductivity as a liquid (melted)		
Solubility in water		
Conducts electricity when dissolved in water		

Writing Chemical Formulas

Chemical formulas are a useful way to convey information about a compound such as:

 \succ

 \triangleright

Covalent Compounds -	Covalent compounds form The chemical
	formula of a covalent compound represents exactly
	of each type of are found
	in each individual molecule.
	Example: H2O2 is a molecule with exactly

atoms and ______ atoms per molecule.

Ionic Compounds - Ionic compounds form ______ and make a ______ structure. The chemical formula of an ionic compound represents a ______ rather than a discrete particle. Ionic compounds are always ______.

Example: MgO is an ionic compound that has _____ magnesium atom attached to every _____ oxygen atom in the

When writing chemical formula, they are typically written such that the element found furthest to the ______ on the Periodic Table is written first.

Making Observations and Describing Matter

Observations

To notice with your _____. Senses may be aided by instruments such as rulers, microscopes, balances etc...

Inferences

To use _____ and _____ to make sense of your observations.

Example: The street is wet (_____). It rained last night (_____).

Observation - The fire alarm is going off.

Inference -

Observation - When a burning splint is placed in an unknown gas, the flame goes out.

Inference -

Types of Observations

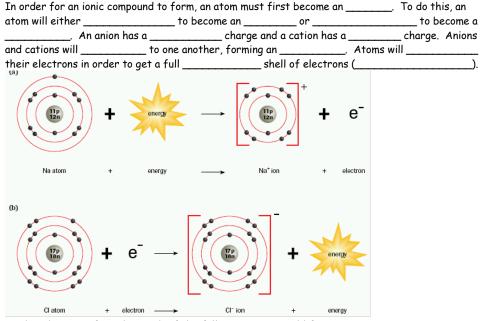
Qualitative Observations:

Observations ______ the nature of something ______. For example: colour, taste, texture etc...

DOES NOT INVOLVE NUMBERS!

Quantitative Observations:

Observations describing the ______ or _____ of something. For example: how fast, how hot, how much etc...


ALWAYS INVOLVE THE USE OF NUMBERS!

Describing matter

The properties that we can observe with our senses are called ______. The following is a list of some physical properties of matter that help us tell one thing from another.

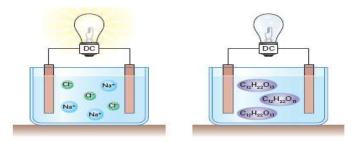
Physical Property	Explanation or Meaning
	Solid, liquid or gas
	Black, white, colourless, greenish-blue, yellow
	Odourless, spicy, sharp, flowery
	Sweet, sour, salty, bitter
	1. Clear (transparent)
	2. Cloudy (translucent)
	3. Opaque (no transmission)
	Ability to reflect light (shiny $ ightarrow$ dull)
	1. Crystalline (regular shape, ex. salt)
	2. Amorphous (irregular shape, ex. pepper)
	Feel - fine, coarse, smooth, gritty
	Scale [1 (soft, baby powder) \rightarrow 10 (very hard, diamond)]
	Ability to shatter easily (not flexible)
	Can it be hammered into a sheet?
	Can it be stretched into a wire?
	The resistance of a liquid to flowing.
	Syrup is viscous, water is not.

Ionic Compounds

Predict the type of ion that each of the following atoms would form:

Atom	Gain or Lose Electrons	Number of Electrons	Ion Formed	Cation or Anion
Potassium				
Magnesium				
Bromine				
Calcium				
Nitrogen				
Sulphur				
Argon				

All metals tend to form	and all no	on-metals Therefore, ionic	
compounds form when a	and a	combine. When these positive and	


negative particles come together they form what is called a ______

a ______ pattern of ions. This is why all ionic compounds appear

as _____

The reason that ionic compounds are capable of	_ is because they are
composed of Electricity is the movement of	particles.
Ionic solids are NOT able to conduct electricity because the ions are held i	n place in a
When	or
in water, the ions will split apart from each other () and are

then free to move around. A substance that can conduct electricity is termed an ______ and an

Some atoms will react more intensely than others when trying to get a full outer shell of electrons.

Which of the following metals is more reactive - lithium, sodium or potassium? Can you suggest why?

Do you think the non-metals will follow the same pattern? For example, fluorine, chlorine and bromine? Can you suggest why?

The following is how you can draw atoms exchanging their electrons to become ions and therefore form an ionic bond and thus becoming stable.

Covalent Compounds

				nged, but rather are ns, creating a		
electrons cre	ntino a	bond or		of electrons re	Dona,	v
				need in order to achie		
		,	,			
Multiple Coval	ent Bonds	5		Compound E.D.D	Lewis St	tructure
One pair of electrons shared	\rightarrow	Single bond	\rightarrow			
Two pairs of electrons	\rightarrow	Double bond	\rightarrow			
shared						
Three pairs of electrons shared	\rightarrow	Triple bond	\rightarrow			
				ns are shared between ements that occur natu		called
Covalent comp wide range of	ounds com	ecules: ne in a variety of _ when compo	ared to	, solid, liquid and g ionic compounds. This	as, and seem t is due to the f	- To have a Fact that
Covalent comp wide range of when atoms ar the molecules	ounds com e sharing that coval	ecules: ne in a variety of _ when comp their electrons, th lent compounds for	ared to ne shari rm can	, solid, liquid and g	as, and seem t is due to the f or	- o have a fact that an
Covalent comp wide range of when atoms ar the molecules variations with Covalent comp	ounds com e sharing that coval nin molecul	ecules: when a variety of _ when compo their electrons, thent compounds for les create the diff NOT typically cor	ared to ne shari rm can ference nduct el	, solid, liquid and g ionic compounds. This ng can occur come in a variety of s we see in covalent co ectricity when	as, and seem t is due to the f or mpounds.	- fo have a fact that an These or
Covalent comp wide range of when atoms ar the molecules variations with Covalent comp	ounds com e sharing that coval nin molecul ounds DO	ecules: when a variety of _ when comp their electrons, thent compounds for les create the diff NOT typically con water. The atoms	ared to ne shari rm can ference iduct el s that n	, solid, liquid and g ionic compounds. This ng can occur come in a variety of s we see in covalent com	as, and seem t is due to the f or mpounds. ules do not	- act that an These or

Bonding Atoms	EDD 1 st element	EDD 2 nd element	Formation of Bond (Movement of Electrons)	Ions formed	Chemical Formula
Lithium and Bromine					
Magnesium and Oxygen					
Beryllium and fluorine					
Aluminium and Sulphur					

The following is how you can draw atoms sharing their electrons to form covalent compounds.

Covalent Molecule	EDD 1 ^{s†}	EDD 2 nd	Compound EDD	Lewis Structural Diagram	Chemical Formula
Molecule	element	element		Chagram	1 of mara
Oxygen and Iodine	element	element			
Phosphorous and Iodine					
Nitrogen and Fluorine					
Carbon and Bromine					
Try for a challenge: Nitrogen and Oxygen					

Chemical Reactions

A chemical reaction can be written in a number of different forms:

Chemical Equation

A description of a chemical reaction using _____, not ____, not ____, where:

- > The ______ are written first
 > The ______ are written second
- The state for each element or compound is indicated in brackets (s), (l). _____ (q), _____ (aq)
- ➢ Reactants and products are separated by an arrow (→) read as "______"

Example:

Word Equation

The elements and compounds that are reacting are written first followed by the products. States are included in the description.

Example:

Skeleton Equation

The Law of	Conservation of Mass states that matter cannot be	or	; it can only
be	from one form to another. Therefore the	in 1	the reactants must
	the number of atoms in the products.		

A skeleton equation is an unbalanced equation that ______ follow the Conservation of Mass. The number of atoms on the left side (reactants) of the chemical equation ______ equal the number of atoms on the right side (products).

Example:

 $H_2(q) + Cl_2(q) \rightarrow HCl(q)$

On the reactant side there is a total of _____ atoms (_____ hydrogen and _____ chlorine) On the product side there is a total of _____ atoms (_____ hydrogen and _____ chlorine)

Balanced Chemical Equation

A balanced chemical equation is an equation that follows the Law of Conservation of Mass. The number of atoms on the reactant side equals the atoms on the product side. In most chemical equations, numbers placed in front of the elements or compounds (______) are required to balance the equation.

Example:

On the reactant side there is a total of _____ atoms (_____ hydrogen and _____ chlorine) On the product side there is a total of _____ atoms (_____ hydrogen and _____ chlorine)

When there is a coefficient of "____", it is typically not written: $H_2(q) + Cl_2(q) \rightarrow 2HCl(q)$

Balancing Equations

All chemical equations must be balanced so that they are consistent with the Law of Conservation of Mass.

Here are some suggestions for balancing equations:

- 1. When balancing equations, always start with the "ugliest" molecule first (polyatomics).
- 2. To balance, place the desired number (coefficient) in front of the element or compound. Never split-up a compound and never change the subscripts in the chemical formula.
- 3. It is often useful to balance the diatomic molecules, if they are present, last.
- 4. Creating a chart to keep track of the type and number of each atom on the reactant and product side of the equation can make balancing easier.
- 5. Make sure to always recheck the final balanced equation.

Examples:

$$\underline{\qquad} Mg(s) + \underline{\qquad} O_2(g) \rightarrow \underline{\qquad} MgO(s)$$

Atoms	Reactants	Products
Mg		
0		

 $_____ H_2$ (g) + $____ O_2$ (g) → $____ H_2O$ (g)

Atoms	Reactants	Products
н		
0		

 $\underline{\qquad} Fe (s) + \underline{\qquad} O_2 (g) \rightarrow \underline{\qquad} Fe_2O_3 (s)$

Atoms	Reactants	Products
Fe		
0		

 $---- Al_2O_3 (s) + ----- H_2 (g) \rightarrow ----- H_2O (l) + ----- Al (s)$

Atoms	Reactants	Products
Al		
0		
н		

 $\underline{\qquad} Pb(NO_3)_2 (aq) + \underline{\qquad} BF_3 (s) \rightarrow \underline{\qquad} B(NO_3)_3 (aq) + \underline{\qquad} PbF_2 (s)$

Atoms	Reactants	Products
Pb		
NO ₃		
В		
F		

Sometimes to balance an equation, fractions must be used. Fractions are not to be left in the final balanced equation, as it impossible to have part of an atom. To get rid of the fraction, multiply every element or compound in the equation by the denominator of the fraction (i.e. If you use $\frac{1}{2}$ as a coefficient, then multiply by 2).

$___ NH_3 (I) + __ O_2 (g) \rightarrow __ NO_2 (g) + __ H_2O(s)$

Atoms	Reactants	Products
N		
н		
0		

 $\underline{\qquad} \mathsf{FeS}_2 \ (\mathfrak{s}) + \underline{\qquad} O_2 \ (\mathfrak{g}) \rightarrow \underline{\qquad} \mathsf{Fe}_2 O_3 \ (\mathfrak{s}) + \underline{\qquad} \mathsf{SO}_2 \ (\mathfrak{g})$

Atoms	Reactants	Products
Fe		
S		
0		

Balancing chemical equations becomes increasing more difficult when you are given the reaction as a word equation. To balance the equation, you must first convert the elements and/or compounds into their correct chemical formula. Even the slightest mistake will make you equation incorrect and could possibly create an equation that is impossible to balance. Be careful, and make sure to always check your work.

Write out a balanced chemical equation for the following:

Oxygen gas reacts with solid aluminum sulfide to produce solid aluminum oxide and sulfur dioxide gas.

Balancing Word Equations

Write the appropriate formulas and symbols below the word equation and then balance each reaction.

1. dicarbon dihydride gas reacts with oxygen gas to produce carbon dioxide gas and liquid dihydrogen monoxide

Types of Chemical Reactions

It is important to be able to classify chemical reactions as it enables scientists to predict possible products or outcomes. For example, think of appropriate storage of chemicals...

Why are some chemicals stored in dark containers?

Why are some chemicals stored in glass jars?

Why is it inappropriate to store propane tanks in areas that get very hot?

Below are 4 major categories of chemical reactions:

1. Synthesis

A synthesis	reaction occurs when 2 or more	combine to
form a new	or	·

The general equation for a synthesis reaction is:

Specific types of synthesis reactions:

a) Metals react with oxygen to produce a metal oxide

b) A non-metal reacts with oxygen to produce a non-metal oxide

c) A metal and non-metal combine to form a binary ionic compound

 hydrogen iodide gas and aqueous sulfuric acid (hydrogen sulfate) react to produce aqueous hydrogen sulfide, iodine gas and liquid dihydrogen monoxide

3. Aqueous potassium sulfate reacts with aqueous barium nitrate to yield aqueous barium sulfate and aqueous potassium nitrate

d) Non-metallic oxides react with water to produce an acid	3. Single Displacement Reaction
e) Metallic oxides react with water to produce a base	A single Displacement reaction occurs when one in a compound is by another This can occur in 2 ways, a can replace a or a
2. Decomposition	The general equation for a single displacement reaction is:
A decomposition reaction is the reverse to a synthesis reaction, a compound or other	Examples: a) AI + $Fe_2O_3 \rightarrow$
The general equation for a decomposition reaction is:	b) $Cl_2 + CaBr_2 \rightarrow$
Example:	 c) Cu + AgNO₃ → How do you know that a single displacement reaction can occur or do they always occur? For example, explain why the above reactions occur but the following reaction does not?
Typically, some form of or type of is needed to initiate a decomposition reaction. A catalyst is a substance that controls the of a reaction, without being during the reaction or affecting the overall	In order to determine if an element will displace another element in a single displacement reaction you must refer to an: If one element is another element in the compound, it can be and a single displacement reaction will occur. Non-metals, typically are involved in Single Displacement Reactions. To determine who can bump out whom, you must refer to the Predict if the following reactions will occur and what the products are: Fluorine Chlorine $I_2 + NaCl \rightarrow$

Iodine	F2 +	

 F_2 + KBr \rightarrow _____

4. Double Displacement Reactions

A double displacement reaction occurs when there is an ______ of _____ between two _____ compounds.

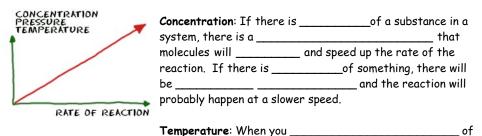
The general equation for a double displacement reaction is:

In the general equation above, A and C are (written first) and B and D are

How do you know that a double displacement reaction can occur or will they always occur?

Evidence that a double displacement reaction will/has occurred:

A) B) C) Example: NaCl + AgNO₃ \rightarrow _____ Example: Na_2CO_3 + HCl \rightarrow _____ Example: $H_3PO_4 + Ca(OH)_2 \rightarrow$ _____ Water is evidence of an _____ reaction (_____ which is a type of double displacement reaction. Since water is a clear, colourless, liquid, it typically cannot be seen by looking at the reaction. To determine if water is present, it has to be tested using _____ or _____ or _____


Rates of Reactions (and Energy Changes - 2DW)

Rates of Reactions

The rate of reactions is defined as the:

Rates of reactions can be explained using the	The collision			
theory states that the	_ that occur between atoms or molecules,			
the	will happen. If there are a higher			
number of collisions in a system, more combinations of molecules will occur. The reaction				
will go faster, and the rate of that reaction will be higher.				

Reactions happen, no matter what. Atoms are always combining or compounds breaking down. The reactions happen over and over but not always at the same speed. A few things affect the overall speed of the reaction and the number of collisions that can occur.

a system, the molecules bounce around a lot more (an increase in thermal energy). When they bounce around more, they are _____. That fact means they are also more likely to combine. When you lower the temperature, the molecules are slower and collide less. That temperature drop lowers the rate of the reaction.

Pressure: Pressure affects the rate of reaction, especially when you look at gases. When you _____, the molecules have _____ in which they can move. That greater concentration of molecules increases the number of collisions. When you ______ atoms and/or molecules and don't hit each other as often. The lower pressure decreases the rate of reaction.

Surface Area: When you _____, you are increasing the number of

atoms/molecules that are able to collide. The more collisions that occur, the areater the opportunity of a reaction occurring.

An example of this is can be seen when comparing a pack of sugar versus a sugar cube placed in water. A pack of sugar provides a greater surface area, as every sugar crystal will be in contact with the water. With a sugar cube, only the outer layer of sugar is in contact with the water and therefore capable of reacting.

Catalyst: A catalyst is defined as _____

(activation energy) required to break the bonds that hold substances together.

Examples of catalysts include enzymes (biological systems), palladium (catalytic converters) and even light (hydrogen peroxide).

Energy Changes and Chemical Reactions (2DW content only)

All chemical reactions involve the **input and release of energy**. Often thermal energy is involved, but can the energy can also come in the form of light, electricity and sound.

You can classify reactions on the basis of whether they release or absorb more energy. **Energy releasing** reactions are called **exothermic**. Examples include the burning of fossil fuels and the rusting of iron.

Some reactions involve the addition of large amounts of energy to cause a chemical change (large activation energy). Energy-absorbing reactions are called endothermic. Cooking food, ice packs and electrolysis are all examples of endothermic reactions.

Identify the following as exothermic or endothermic:

Ice melting - _____

A match burning - _____

Frying an egg - _____

Mixing acids with water will cause a rise in temperature - _____

Hydrogen gas and chlorine gas will explode when exposed to UV light - _____

Acids and Bases

An **acid** is a substance that produces ______ in solution, _____(aq). For example:

i) When hydrochloric acid, HCl is placed in solution it dissociates (ionizes) into:

ii) When sulfuric acid, $H_2 SO_4$ is placed in water it dissociates (ionizes) into:

A base is a substance that produces ______ in solution, _____ (aq). For example:

i) When sodium hydroxide, NaOH is placed in solution it dissociates (ionizes) into:

ii)When calcium hydroxide, Ca(OH)₂ is placed in solution it dissociates (ionizes) into: _____

Acids and bases have	that are summarized in the table below:	
Acids	Bases	
	Taste bitter	
Has no characteristic feel		
	Conducts electricity	
Keeps red litmus red		
Turns blue litmus red		
	Bromothymol blue remains blue	
Keeps phenolphthalein clear		
	Does not react with metals	
Reacts with sodium carbonate to produce carbon dioxide (limewater test)		
	Reacts with ammonium chloride to	
	produce ammonia (waft for odour)	

Indicators

Most solutions of acids or bases are	and	Therefore		
they cannot be distinguished from ordinary water by appearance alone. The				
simplest way to distinguish them from water is to use an				
indicator is a substance that produces a		as the		
concentration of and	changes.			

Indicators can be made from ______ products such as flowers, fruit and vegetables. There are also a number of ______ indicators. These are more common as they tend to last longer and can be produced in large quantities.

Concentration of Acids and Bases (pH)

Concentration is defined	as the amount of	per quantity of
	. The concentration of a product	can easily be altered by
diluting with	or the addition of	
	is the universal solvent.	

When you determine the concentration of hydrogen ions in solution (amount of H+ ions/ total solution volume) you are determining the ______ of that particular solution. pH stands for, "______". The pH of a substance can be determined a number of different ways, such as with the use of pH paper, an electronic pH meter or mathematically. **The pH scale ranges from** ______.

Acids have a pH _____ Bases have a pH _____ Neutral substances have a pH _____

While the pH scale ranges from 0 to 14 and each pH unit represents a factor of 10.

A change in pH from 3 to 8 is a(n) ______ increase/decrease in [H⁺] A change in pH from 11 to 2 is a(n) ______ increase/decrease in [H⁺]

Strength of Acids and Bases

Strong acid -

Example: $HCl_{(aq)} \rightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)}$

When hydrogen chloride molecules enter an aqueous solution, 100% of the hydrogen chloride molecules dissociate. As a result the solution contains the same percent of $\rm H^{\star}$ ions and $\rm Cl^{-}$ ions: 100%

Weak acid -

Example: $CH_3COOH_{(aq)} \Leftrightarrow H^{+}_{(aq)} + CH_3COO^{-}_{(aq)} + CH_3COOH_{(aq)}$

On average, only about 1% of the acetic acid molecules dissociate at any given moment.

Notice that the arrow used in the dissociation of a weak acid points in both directions. This indicates that the reaction is ______. The products of the reaction will also react to produce the original reactants.

Strong base -

Examples: NaOH, Mg(OH)2

Weak base -

Example: NH₃

Neutralization Reactions

Neutralization occurs when ______ (base) and ______ _____(acid) are mixed to make ______ and a ______. Neutralization reactions are types of ______ reactions. The general word equation for a neutralization is:

Examples:

1. Given the full equation in words:

Aqueous solutions of hydrobromic acid and beryllium hydroxide undergo a neutralization reaction to produce liquid water and aqueous beryllium bromide.

- 2. Given the partial equation in words or in these cases, in chemical formulae, you can complete the following equations:
- ____ H_2SO_{4 (aq)} + ____ LiOH _(aq) \rightarrow

 $\underline{\qquad} Ca(OH)_{2 (aq)} + \underline{\qquad} H_{3}PO_{4 (aq)} \rightarrow$

3. Working backwards from the examples above, you can determine which acid and base would react together to produce the following salts:

i) KNO3

ii) MqCO₃

Elements and Oxides

An oxide is any element chemically combined with oxygen. How does the element's position in the periodic table affect the ability of the oxide to form an acid or a base?

How does an element's position in the periodic table affect the ability of the element to form an acid or a base?

Reactions of Metals

Review:

- Metals are found on the left side of the staircase
- Metals are generally shiny, ductile, malleable, good conductors of electricity and heat, and **solid** at room temperature (except **Mercury**)

There are certain patterns of chemical behavior that metals follow:

- Form metal oxides when they react in oxygen
- Metal oxides are always solids
- Metal oxides form bases when they react with water

Since they form bases, they can be called basic oxides or basic anhydrides.

For example:

Potassium burns in oxygen to produce potassium oxide. The balanced chemical equation representing this statement is:

$$4 K + O_2 \rightarrow 2 K_2 O$$

When the potassium oxide reacts with water the product is potassium hydroxide. The balanced chemical equation representing this statement is:

$$K_2O + H_2O \rightarrow 2 \text{ KOH (aq)}$$

Potassium hydroxide is used in **liquid fertilizer**, **cosmetics**, **paint removers**, and **making soap**.

Reactions of Non-Metals

Review:

- Non-metals are found to the right of the staircase
- Non-metals are usually brittle, dull, poor conductors of heat and electricity, and have a variety of states at **room temperature**

Non-metals also follow certain patterns of chemical behavior, such as:

- Form non-metal oxides when they react in oxygen
- Non-metal oxides are often liquid or gases
- When non-metal oxides react with water they form acids

Since they form **acids** they can also be called **acidic** oxides.

For example:

Nitrogen reacts with oxygen to form nitrogen dioxide. The balanced equation representing this statement is:

$$N_2 + O_2 \rightarrow 2 NO_2$$

When the nitrogen dioxide is reacted with water, the product is nitric acid. The balanced equation representing this statement is:

 $3 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow 2 \text{ HNO}_3 (aq) + \text{NO}$

Nitric acid contributes to our air pollution and is used in many industrial reactions.