Classifying Matter

What is Science?	•		
		abo	
Whenever we ask	or something h	appens we are dealing with s	science.
What is Chemistry? Chemistry is the study of	and the _	it undergoes	s.
	Matte Anything that has takes up(and	
Pure Substan A material that has definit made of	te composition -	Mixt A combination of matter, in which each own	or kinds of n component retains its
Element A pure	Compound A pure substance	Solution (Mechanical Mixture
substance that cannot be into smaller substances by means	of chemically combined in	A mixture in which the different components are so they appear to be a	() A mixture in which the different components can be
Physical and Chemical Physical Change -	Changes in Matter		
Chemical Change -			
Five Clues that a Chemi 1. 2. 3. 4.	ical Change has occurre	ed:	

5.

An Introduction to the Periodic Table

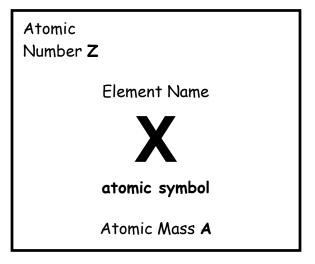
During the mid 1800's, Russian scientification	entist	invented the modern
periodic table after noticing a rela	ationship between tl	ne and
of the elements	. He placed the elen	nents in order of increasing
At the time a		
The modern periodic table, which	is comprised of over	elements,
of which are naturally occurring, is		
use of element	that are the same	throughout the entire world.
Metals are located on the	and throu	ighout the of the
Periodic Table. Metals are one kind		
common,		
All metals are		
Non-metals are located on the		of the Periodic Table
Non-metals are, not		
conductors of and		
or		
or	and one,	(b)), is a liquid.
A division line known as the "	" separat	tes metals and non-metals. On
either side of the staircase are a		
that show	of both r	netals and non-metals.
The name for each		iodic Table is a
There are periods	S.	
The columns in	the periodic table (are called
and range from 1-18 (these are ty	•	
are given special names because the	•	
		or cicinents with
There are four families within the	periodic table:	
Group 1 -		
Group 2 -		
Group 17 -		
Group 18 -		

	_														
1															2
Н		_													He
3	4									5	6	7	8	9	10
Li	Be									В	С	N	0	F	Ne
11	12									13	14	15	16	17	18
Na	Mg									Al	Si	Р	S	CI	Ar
19	20			25	26	27	28	29	30					35	36
K	Ca			Mn	Fe	Со	Ni	Cu	Zn					Br	Kr
	Cu			/////	16	C0	INI	47	<u> </u>		50			53	54
														_	
								Ag			Sn			I	Xe
								79	80		82				86
								Au	Hg		Pb				Rn
							ļ								

Periodic Chart of the Elements

Atoms and Their Composition

Elements are the basic substances that make up all	
--	--


An atom is the smallest particle of an element that still retains the of the element.						
Atoms are made up of even smaller partic	cles. These particles are 	<u> </u>				
•	or core of an atom and contribute to the and occupy the that surround the					
	ectrons are so and that the	hey				

Subatomic Particle	Charge	Symbol	Mass (g)	Radius (m)
Electron			9.02×10 ⁻²⁸	Smaller than 10 ⁻¹⁸
Proton			1.67×10 ⁻²⁴	10 ⁻¹⁵
Neutron			1.67×10 ⁻²⁴	10 ⁻¹⁵

Since subatomic particles are so light, chemists use a unit called an ______ for their measurement. Both protons and neutrons have a mass of ______.

Every Element has a unique:

- Name
- Symbol
- Atomic number (Z)
- Atomic Mass (A)

	of an atom can be detern on the Periodic Table	mined by
Examples:		
17 CI 35.45	7 N 14.01	18 Ar 39.95
Mass Number:		
We can use this informatio equation:	n to calculate the number of n	neutrons by means of the following
Number	of neutrons =	
Examples:		
a mass number on the Perio		(a decimal number) instead of epresents a "" atom.
•	lement that have the same nur	mber of in their _·
Isotopes have very similar	properties, but tl	hey differ in properties.
Example:		
"Light" Lithiun	n "Heav	vy" Lithium

How to Draw Atoms

Draw Bohr-Rutherford Diagrams

Ernest Rutherford and Niels Bohr developed the planetary model of the in 1913. In this model, the
nucleus, containing the and, takes the central place just like the Sun takes the
central place in our solar system. The electrons spin around the nucleus in orbits similar to the path of the planets
around the Sun. The orbits represent the different amounts of that the can have.
Electrons in the first orbit have the energy, whereas electrons in the last orbital have the
energy. The first orbit holds up to electrons. The second and third orbits contain up to electrons.
As you fill the orbits, always fill the energy orbit first, then fill up the next one and the next and so on.
When you draw Bohr-Rutherford diagrams of an element, you identify the of and
in the centre of the atom and place to represent the in their orbits.
Since electrons have a charge, and according the law of,,
charged particles and charges; you must place the first
electrons in the orbit as far apart as possible. For reasons beyond the scope of this course, the next
electrons in the orbit (if there are any) pair up with the electrons already there.
Step 1: Determine the number of protons
This is equal to the atomic number of the element
Step 2: Determine the number of electrons
This is equal to the number of protons.
Step 3: Determine the number of neutrons.
Subtract the atomic number (Z) from the mass number (M) of the element. Just a reminder that the mass number is
the rounded to the nearest
Step 4: Draw a nucleus and write in the number of protons and neutrons.
Step 5: Draw electron shells around the nucleus and fill them with the appropriate number of electrons. Always fill
the inner shells to their maximum before moving to the outer shells.
Lewis (Electron) Dot Diagrams
Lewis Dot Diagrams are a short way to show the energy shell (shell) for an atom. These
are the electrons on the outer perimeter of an atom and generally the ones that will be involved in
The element is used to represent, the, and all Just
The element is used to represent, the, and all Just like when drawing B/R Diagrams, the first four valence electrons (dots) should be drawn as far apart as possible, one
on each side of the The remaining four electrons (if present) can then be paired up.
·

Classifying Chemical Compounds

A compound is a	composed of two	or more elem	ments, chemic	cally bonded i
fixed proportions. Chemical bonds are _	tha	t	atoms t	o each other
Bonding involves the interaction between	ı the		_ of atoms a	nd is the
driving force of	•			
While there are only naturally	occurring element	ts, there are		of
different compounds. To help organize the groups based on the of bor	•		•	
Ionic Bond				
A chemical bond between It usually involves a	_			
Covalent Bond				
A chemical bond in whichinvolves two		t	y two atoms.	It usually

Comparing Ionic and Covalent Compounds

Property	Ionic Compound	Covalent Compound
State at room		
temperature		
Melting point		
Electrical conductivity		
as a liquid (melted)		
Solubility in water		
Conducts electricity		
when dissolved in water		

Writing Chemical Formulas

Chemical formulas a as:	re a useful way to convey information about a comp	ound such
>		
The chemical formu holding the compour	la has different meanings depending on the type of nd together.	
Covalent Compounds	s - Covalent compounds form formula of a covalent compound represents ex of each type of in each individual molecule. Example: H ₂ O ₂ is a molecule with exactly	actly _ are found
	atoms and atoms per	
Ionic Compounds -	Ionic compounds form and make a structure. The chemical formula of an ionic compounds are always rather than a discrete Ionic compounds are always	ound
	Example: MgO is an ionic compound that has atom attached to every oxyger	atom in the
	cal formula, they are typically written such that the on the Periodic Table is written	

Making Observations and Describing Matter

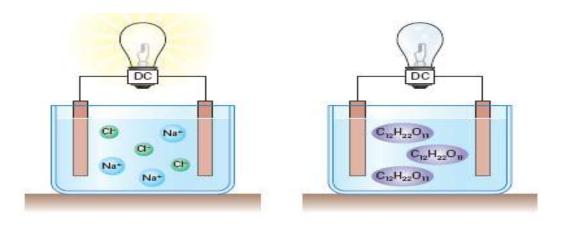
Observations To notice with your _____. Senses may be aided by instruments such as rulers, microscopes, balances etc... **Inferences** To use _____ and ____ to make sense of your observations. Example: The street is wet (_______). It rained last night (_______). Observation - The fire alarm is going off. Inference -Observation - When a burning splint is placed in an unknown gas, the flame goes out. Inference -Types of Observations Qualitative Observations: Observations _____ the nature of something _____ For example: colour, taste, texture etc... DOES NOT INVOLVE NUMBERS! Quantitative Observations: Observations describing the _____ or ____ of something. For example: how fast, how hot, how much etc...

ALWAYS INVOLVE THE USE OF NUMBERS!

Describing matter

The properties that we can observe with our senses are called ______. The following is a list of some physical properties of matter that help us tell one thing from another.

Physical Property	Explanation or Meaning
	Solid, liquid or gas
	Black, white, colourless, greenish-blue, yellow
	Odourless, spicy, sharp, flowery
	Sweet, sour, salty, bitter
	1. Clear (transparent)
	2. Cloudy (translucent)
	3. Opaque (no transmission)
	Ability to reflect light (shiny \rightarrow dull)
	1. Crystalline (regular shape, ex. salt)
	2. Amorphous (irregular shape, ex. pepper)
	Feel - fine, coarse, smooth, gritty
	Scale [1 (soft, baby powder) → 10 (very hard, diamond)]
	Ability to shatter easily (not flexible)
	Can it be hammered into a sheet?
	Can it be stretched into a wire?
	The resistance of a liquid to flowing.
	Syrup is viscous, water is not.


Ionic Compounds

atom will eithe	r	†	o become an	or	1	to become a
·	An anio	n has a	cha	ge and a cati	on has a	charge. Anions
and cations wil	l	to one	another, for	ning an	Ato	ns will
their electrons	s in order	r to get a full		shell of e	electrons ().
Na atom	+	energy		Na ⁺ ion	+ electron	
(b) 17p 18n	+	e ¯ →	(7 ^p) 18n	+	energy	
Cl atom	+	electron	Cl ⁻ ior	+	energy	
Predict the ty	pe of ion	that each of	the following	atoms would	form:	

Atom	Gain or Lose Electrons	Number of Electrons	Ion Formed	Cation or Anion
Potassium				
Magnesium				
Bromine				
Calcium				
Nitrogen				
Sulphur				
Argon				

All metals tend to form	and all non-metals	Therefore, ionic
compounds form when a	and a com	bine. When these positive and
negative particles come toget	her they form what is called a $_$	<u></u>
α	pattern of ions. Thi	is is why all ionic compounds appear
as	 •	

The reason that ionic compounds are capable of	is because they are
composed of Electricity is the movement of	particles.
Ionic solids are NOT able to conduct electricity because the ions are held	in place in a
When	or
in water, the ions will split apart from each other () and are
then free to move around. A substance that can conduct electricity is ter	med an .

Some atoms will react more intensely than others when trying to get a full outer shell of electrons.

Which of the following metals is more reactive - lithium, sodium or potassium? Can you suggest why?

Do you think the non-metals will follow the same pattern? For example, fluorine, chlorine and bromine? Can you suggest why?

The following is how you can draw atoms exchanging their electrons to become ions and therefore form an ionic bond and thus becoming stable.

Bonding Atoms	EDD 1 ^{s†} element	EDD 2 nd element	Formation of Bond (Movement of Electrons)	Ions formed	Chemical Formula
Lithium and Bromine					
Magnesium and Oxygen					
Beryllium and fluorine					
Aluminium and Sulphur					

Covalent Compounds

Covalent compo	ounds typ	pically form when t	wo or more	bond togeth	ner. During a
covalent bond,	valence (electrons are	_exchanged, but rather	are	between
atoms. Atoms	can shar	e of	electrons, creating a _	bond;	of
electrons, crea	ating a	bond; o	of electr	rons resulting is a $_$	
bond. Atoms w	vill share	as many electrons	as they need in order to	o achieve a stable c	octet.
Multiple Coval	ent Bono	ls .	Compound E.L	D.D Lewis	Structure
One pair of electrons shared	\rightarrow	Single bond	\rightarrow		
Two pairs of electrons shared	\rightarrow	Double bond	\rightarrow		
Three pairs of electrons shared	\rightarrow	Triple bond	\rightarrow		
	Th	ere are only seven	electrons are shared be such elements that occu	ur naturally; they a	
wide range of _		when comp	, solid, liqui ared to ionic compounds he sharing can occur	s. This is due to the	e fact that
the molecules	that cove	alent compounds fo	rm can come in a variety ferences we see in cova	y of	
			nduct electricity when _ s that make-up covalent		
			but rather remain as		
			ve around to create elec		

The following is how you can draw atoms sharing their electrons to form covalent compounds.

Covalent Molecule	EDD 1 ^{s†} element	EDD 2 nd element	Compound EDD	Lewis Structural Diagram	Chemical Formula
Oxygen and Iodine					
Phosphorous and Iodine					
Nitrogen and Fluorine					
Carbon and Bromine					
Try for a challenge: Nitrogen and Oxygen					

Chemical Reactions

A chemical reaction can be written in a number of different forms:

	cal Equation				
A desci	ription of a chemical reactio	n using	, not	, where:	
>	The	are written first			
>	The	are written secon	ıd		
>			ed in brackets	(s),	(l),
	(g), Reactants and products an	(aq)			
>	Reactants and products ar	re separated by an arrow	(→) - read as "		•
Exampl	e:				
Word	Equation				
The ele	ments and compounds that o	are reacting are written f	first followed by the	products. States ar	e included in the
Exampl	e:				
The Law be A skele of atom	ton Equation of Conservation of Mass some from one the number of atoms ton equation is an unbalance as on the left side (reactant roducts).	form to another. Theref ms in the products. d equation that	ore the follow the (in the rea Conservation of Mass	ctants must . The number
Exampl	e:				
,		H ₂ (g) + Cl ₂ (g) ightarrow HCl (g)		
	reactant side there is a toto product side there is a tota				
Baland	ced Chemical Equation				
the rea	ced chemical equation is an action is an action of the compounds (on the product side. In	most chemical equati	ons, numbers placed	
Exampl	e:				
	reactant side there is a tota product side there is a tota		•		
When t	here is a coefficient of "	", it is typically not wri	itten: $H_2(q) + Cl_2$	$(q) \rightarrow 2HCl(q)$	

Balancing Equations

All chemical equations must be balanced so that they are consistent with the Law of Conservation of Mass.

Here are some suggestions for balancing equations:

- 1. When balancing equations, always start with the "ugliest" molecule first (polyatomics).
- 2. To balance, place the desired number (coefficient) in front of the element or compound. Never split-up a compound and never change the subscripts in the chemical formula.
- 3. It is often useful to balance the diatomic molecules, if they are present, last.
- 4. Creating a chart to keep track of the type and number of each atom on the reactant and product side of the equation can make balancing easier.
- 5. Make sure to always recheck the final balanced equation.

Examples:

$$_$$
 Mg (s) + $_$ O₂ (g) \rightarrow $_$ MgO (s)

Atoms	Reactants	Products
Мд		
0		

$$_$$
 $H_2(g) + _$ $O_2(g) \rightarrow _$ $H_2O(g)$

Atoms	Reactants	Products
Н		
0		

____ Fe (s) + ____
$$O_2$$
 (g) \rightarrow ____ Fe₂ O_3 (s)

Atoms	Reactants	Products
Fe		
0		

Al_2O_3 (s) + H_2 (g) \rightarrow M_2	_ H ₂ O (I) +	Al (s)
---	--------------------------	--------

Atoms	Reactants	Products
Al		
0		
Н		

$$Pb(NO_3)_2$$
 (aq) + ____ BF_3 (s) \rightarrow ____ $B(NO_3)_3$ (aq) + ____ PbF_2 (s)

Atoms	Reactants	Products
Pb		
NO₃		
В		
F		

Sometimes to balance an equation, fractions must be used. Fractions are not to be left in the final balanced equation, as it impossible to have part of an atom. To get rid of the fraction, multiply every element or compound in the equation by the denominator of the fraction (i.e. If you use $\frac{1}{2}$ as a coefficient, then multiply by 2).

$$NH_3$$
 (I) + ____ O_2 (g) \rightarrow ____ NO_2 (g) + ____ $H_2O(s)$

Atoms	Reactants	Products
N		
Н		
0		

____ FeS₂ (s) + ____
$$O_2$$
 (g) \rightarrow ____ Fe₂ O_3 (s) + ___ SO_2 (g)

Atoms	Reactants	Products
Fe		
S		
0		

Balancing chemical equations becomes increasing more difficult when you are given the reaction as a word equation. To balance the equation, you must first convert the elements and/or compounds into their correct chemical formula. Even the slightest mistake will make you equation incorrect and could possibly create an equation that is impossible to balance. Be careful, and make sure to always check your work.

Write out a balanced chemical equation for the following:

Oxygen gas reacts with solid aluminum sulfide to produce solid aluminum oxide and sulfur dioxide gas.

Balancing Word Equations

Write the appropriate formulas and symbols below the word equation and then balance each reaction.

1. dicarbon dihydride gas reacts with oxygen gas to produce carbon dioxide gas and liquid dihydrogen monoxide

2. hydrogen iodide gas and aqueous sulfuric acid (hydrogen sulfate) react to produce aqueous hydrogen sulfide, iodine gas and liquid dihydrogen monoxide

3. Aqueous potassium sulfate reacts with aqueous barium nitrate to yield aqueous barium sulfate and aqueous potassium nitrate

Types of Chemical Reactions

It is important to be able to classify chemical reactions as it enables scientists to predict possible products or outcomes. For example, think of appropriate storage of chemicals...

Why are some chemicals stored in dark containers?
Why are some chemicals stored in glass jars?
Why is it inappropriate to store propane tanks in areas that get very hot?

Below are 4 major categories of chemical reactions:

 Synthesis A synthesis reaction occu 	urs when 2 or more	combine to
	or	
The general equation for	a synthesis reaction is:	
Specific types of synthes	sis reactions:	
a) Metals react with oxy	gen to produce a metal oxide	
b) A non-metal reacts wi	ith oxygen to produce a non-metal o	xide
c) A metal and non-meta	ll combine to form a binary ionic con	npound

d) Non-metallic oxides react with water to produce an acid

e) Metallic oxides react with water to produce a base
2. Decomposition
A decomposition reaction is the reverse to a synthesis reaction, a compound into or other
The general equation for a decomposition reaction is:
Example:
Typically, some form of or type of is needed to initiate a decomposition reaction.
A catalyst is a substance that controls the of a reaction, without being during the reaction or affecting the overall

3. Single Displacement Reaction

	cement reaction occurs whe		
	by another		
can replace a _	or a	can replace	a
_	uation for a single displacem		
Examples:	a) Al + Fe ₂ O ₃ →		
	b) $Cl_2 + CaBr_2 \rightarrow$		
	c) Cu + AgNO ₃ \rightarrow		
How do you knov	v that a single displacement red	action can occur or do t	hey always occur?
For example, e	xplain why the above reaction	ons occur but the follo	owing reaction does
	termine if an element will dis eaction you must refer to ar	•	_
	is another ele and a single displacem		
Non-metals, ty To determine v	rpically are in who can bump out whom, you 	volved in Single Displ must refer to the	acement Reactions.
	following reactions will occur	and what the produc	cts are:
Chlorine Bromine	I_2 + NaCl \rightarrow		
	F_2 + KBr \rightarrow		

4. Double Displacement Reactions

A double displacement reaction occurs when there is an	(ρf
between two		
The general equation for a double displacement reaction is:		
In the general equation above, A and C are B and D are	(written first) and	d
How do you know that a double displacement reaction can occur o	r will they always occur?	
Evidence that a double displacement reaction will/has occu	rred:	
A) B) C)		
Example: NaCl + $AgNO_3 \rightarrow$		
Example: Na ₂ CO ₃ + HCl \rightarrow		
Example: $H_3PO_4 + Ca(OH)_2 \rightarrow$		
Water is evidence of an reaction (which is a type of double displacement reaction. Since wat liquid, it typically cannot be seen by looking at the reaction is present, it has to be tested using	er is a clear, colourless . To determine if wate	s, er
, J		_

Rates of Reactions (and Energy Changes -2DW)

Rates of Reactions

The rate of reactions is defined as the:

Rates of reactions can be ex	xplained using the	The collisior
		ccur between atoms or molecules,
		happen. If there are a higher
number of collisions in a sys	tem, more combinations of n	nolecules will occur. The reaction
will go faster, and the rate of	of that reaction will be highe	er.
Reactions happen, no matter	what. Atoms are always co	mbining or compounds breaking
down. The reactions happen	over and over but not always	s at the same speed. A few things
affect the overall speed of	the reaction and the number	of collisions that can occur.
CONCENTRATION PRESSURE	Concentration: If there is	sof a substance in a
TEMPERATURE	system, there is a	that
	molecules will	_ and speed up the rate of the
	reaction. If there is	of something, there will
	be	and the reaction will
	probably happen at a slow	er speed.
RATE OF REACTION		
		of
•		crease in thermal energy). When
-	-	That fact means
•	•	ne temperature, the molecules are
slower and collide less. That	temperature drop lowers th	ie rate of the reaction.
Pressure : Pressure affects:	the rate of reaction especia	ally when you look at gases. When
		ave
		nolecules increases the number of
•		s and/or molecules
		ecreases the rate of reaction.
Surface Area: When you		
	vou are incre	asing the number of
atoms/molecules that are al	ole to collide. The more colli	asing the number of isions that occur, the greater the
opportunity of a reaction oc		. 3

An example of this is can be seen when comparing a pack of sugar versus a sugar cube placed in water. A pack of sugar provides a greater surface area, as every sugar crystal will be in contact with the water. With a sugar cube, only the outer layer of sugar is in contact with the water and therefore capable of reacting.
Catalyst: A catalyst is defined as
Catalysts lower the energy required
(activation energy) required to break the bonds that hold substances together.
Examples of catalysts include enzymes (biological systems), palladium (catalytic converters) and even light (hydrogen peroxide).
Energy Changes and Chemical Reactions (2DW content only)
All chemical reactions involve the input and release of energy. Often thermal energy is involved, but can the energy can also come in the form of light, electricity and sound.
You can classify reactions on the basis of whether they release or absorb more energy. Energy releasing reactions are called exothermic . Examples include the burning of fossil fuels and the rusting of iron.
Some reactions involve the addition of large amounts of energy to cause a chemical change (large activation energy). Energy-absorbing reactions are called endothermic. Cooking food, ice packs and electrolysis are all examples of endothermic reactions.
Identify the following as exothermic or endothermic:
Ice melting
A match burning
Frying an egg
Mixing acids with water will cause a rise in temperature -
Hydrogen gas and chlorine gas will explode when exposed to UV light

Acids and Bases

An acid is a substance that produce	es in solution, (aq). For example:
i) When hydrochloric acid, HCl is pl	laced in solution it dissociates (ionizes) into:
ii) When sulfuric acid, H ₂ SO ₄ is pla	ced in water it dissociates (ionizes) into:
A base is a substance that produce For example:	es in solution, (aq).
i) When sodium hydroxide, NaOH i	s placed in solution it dissociates (ionizes) into:
ii)When calcium hydroxide, Ca(OH)) ₂ is placed in solution it dissociates (ionizes)
Acids and bases have	that are summarized in the table below:

Acids	Bases	
	Taste bitter	
Has no characteristic feel		
	Conducts electricity	
Keeps red litmus red		
Turns blue litmus red		
	Bromothymol blue remains blue	
Keeps phenolphthalein clear		
	Does not react with metals	
Reacts with sodium carbonate to produce carbon dioxide (limewater test)		
	Reacts with ammonium chloride to	
	produce ammonia (waft for odour)	

Indicators

Most solutions of acids or bases are	and	Therefore
they cannot be distinguished from ordina		
simplest way to distinguish them from wo	ater is to use an	An
indicator is a substance that produces a		
concentration of and		
Indicators can be made from	prod	ucts such as
Indicators can be made from flowers, fruit and vegetables. There are	e also a number of	
indicators. These are more common as t		
produced in large quantities.	,	
Concentration of Acids and Bases	<u>(pH)</u>	
Concentration is defined as the amount o	nf ner	auantity of
The concentr		
diluting with		
is the universe		 '
When you determine the concentration o	of hydrogen ions in solution (am	ount of H+
ions/ total solution volume) you are deter	rmining the of tha	t particular
solution. pH stands for, "		a substance
can be determined a number of differen	t ways, such as with the use of	pH paper,
an electronic pH meter or mathematicall	y. The pH scale ranges from $_$	··
Acids have a pH		
Bases have a pH		
Neutral substances have a pH		
While the pH scale ranges from 0 to 14 o	and each pH unit represents a f	actor of 10.
A change in pH from 3 to 8 is a(n)	increase/decrease	in [H⁺]
A change in pH from 11 to 2 is a(n)		

Strength of Acids and Bases

Strong acid -

Example:
$$HCl_{(aq)} \rightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)}$$

When hydrogen chloride molecules enter an aqueous solution, 100% of the hydrogen chloride molecules dissociate. As a result the solution contains the same percent of H^{+} ions and Cl^{-} ions: 100%

Weak acid -

Example:
$$CH_3COOH_{(aq)} \Leftrightarrow H^+_{(aq)} + CH_3COO^-_{(aq)} + CH_3COOH_{(aq)}$$

On average, only about 1% of the acetic acid molecules dissociate at any given moment.

Notice that the arrow used in the dissociation of a weak acid points in both directions. This indicates that the reaction is ______. The products of the reaction will also react to produce the original reactants.

Strong base -

Examples: NaOH, Mg(OH)2

Weak base -

Example: NH₃

Neutralization Reactions

Neutralization occurs when	(base) and	
(acid) are mixed to make	and a	·
Neutralization reactions are types of		reactions.
The general word equation for a neutralization is:		

Examples:

1. Given the full equation in words:

Aqueous solutions of hydrobromic acid and beryllium hydroxide undergo a neutralization reaction to produce liquid water and aqueous beryllium bromide.

2. Given the partial equation in words or in these cases, in chemical formulae, you can complete the following equations:

$$_$$
 H₂SO_{4 (aq)} + $_$ LiOH (aq) \rightarrow

$$\underline{\hspace{1cm}} \text{Ca(OH)}_{2\;(aq)} + \underline{\hspace{1cm}} \text{H}_{3}\text{PO}_{4\;(aq)} \rightarrow$$

- 3. Working backwards from the examples above, you can determine which acid and base would react together to produce the following salts:
- i) KNO₃

Elements and Oxides

An oxide is any element chemically combined with oxygen. How does the element's position in the periodic table affect the ability of the oxide to form an acid or a base?

How does an element's position in the periodic table affect the ability of the element to form an acid or a base?

Reactions of Metals

Review:

- Metals are found on the **left** side of the staircase
- Metals are generally shiny, ductile, malleable, good conductors of electricity and heat, and solid at room temperature (except Mercury)

There are certain patterns of chemical behavior that metals follow:

- Form metal oxides when they react in oxygen
- Metal oxides are always solids
- Metal oxides form bases when they react with water

Since they form bases, they can be called basic oxides or basic anhydrides.

For example:

Potassium burns in oxygen to produce potassium oxide. The balanced chemical equation representing this statement is:

$$4 K + O_2 \rightarrow 2 K_2O$$

When the potassium oxide reacts with water the product is potassium hydroxide. The balanced chemical equation representing this statement is:

$$K_2O + H_2O \rightarrow 2 KOH (aq)$$

Potassium hydroxide is used in liquid fertilizer, cosmetics, paint removers, and making soap.

Reactions of Non-Metals

Review:

- Non-metals are found to the right of the staircase
- Non-metals are usually brittle, dull, poor conductors of heat and electricity, and have a variety of states at room temperature

Non-metals also follow certain patterns of chemical behavior, such as:

- Form non-metal oxides when they react in oxygen
- Non-metal oxides are often liquid or gases
- When non-metal oxides react with water they form acids

Since they form acids they can also be called acidic oxides.

For example:

Nitrogen reacts with oxygen to form nitrogen dioxide. The balanced equation representing this statement is:

$$N_2 + O_2 \rightarrow 2 NO_2$$

When the nitrogen dioxide is reacted with water, the product is nitric acid. The balanced equation representing this statement is:

$$3 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow 2 \text{ HNO}_3 (aq) + \text{NO}$$

Nitric acid contributes to our air pollution and is used in many industrial reactions.