Name: ANSWERS

SNC2DI

Chemistry Study Sheet

 \square Lab safety \rightarrow know the safety rules of our science classroom

Environment

Hazard

Gas cylinder

Compressed gas

Exploding bomb Exploding/reactive

Biohazardous/Infectious

☐ HHPS→ recognize the 4 household hazardous product symbols and the 3 shapes that can surround them

flammable

Caution, explosive

corrosive

☐ Classifying Matter→ define matter:

☐ Periodic Table → be familiar with how the periodic table is organized (i.e. atomic #'s, periods, groups) and locate various groups (i.e. metals, non-metals, metalloids; main group elements, transitional and inner transitional metals; & the 4 families with names: Alkali, Alkaline Earth Metals, Halogens and Noble gases)

☐ Atoms over the years→explain the changing model of the atom and people involved in each from the billiard ball to raisin muffin, to nuclear and finally the planetary model

DALTON
- Billiard ball model
(atoms bump into each
Other like billiard balls)

THOMPSON
- Raisin bun model
electrons move around
atom

RUTHERFORD

- Gold foil experiment

1. Atom mostly empty space
2. Nucleus is small, dense, and positive.

BOHR

- planetary

e move in shells

□ Atoms & their composition → understand how to determine the number of protons, electrons and neutrons in each element when neutral and when ions are formed

$$^{40}_{20}Ca$$
 p⁺ = 20_ e⁻ = 20_ n^o = _20

$$^{207}_{82}Pb^{+4}$$
 p⁺ = **82**_ e⁻ = **78**_ n^o = **125**_

$$^{80}_{35}Br^{-1}$$
 p⁺ = **35**_ e⁻ = **36**_ n^o = _**45**

□ How to draw atoms → be able to draw the Bohr-Rutherford and Lewis Dot Diagrams (aka: E.D.D) for the first 20 elements; also be familiar with the E.D.D for all main group elements

BRD for $^{31}_{15}P$

Lewis Electron-Dot Symbols for Elements in Periods 2 & 3

		1A(1)	2A(2)	3A(13)	4A(14)	5A(15)	6A(16)	7A(17)	8A(18)
		ns ¹	ns ²	ns ² np ¹	ns²np²	ns ² np ³	ns²np⁴	ns ² np ⁵	ns²np6
200	2	• Li	•Be•	• B •	· ċ ·	• N •	:0.	: F:	:Ne:
	3	•Na	•Mg•	• AI •	·Si·	. p .	: s ·	: CI :	: Ar

□ Classitying compounds → understand how to classify

 $P_2O_5 = COVALENT$ $NO_2 = COVALENT$

 $MgCO_3 = IONIC$ $Ba_2C = IONIC$

FeCl₂ = IONIC ICl = COVALENT

CO = COVALENT (NH₄)₃PO₄ = IONIC (polyatomic IONS!!)

☐ Ionic compounds → know the properties of ionic compounds and be able to use E.D.D to show how they bond, the ions formed and the chemical formulas of each

Properties: CRYSTALLINE SOLIDS, HIGH MELTING POINTS, CONDUCT ELECTRICITY IN WATER, HARD & BRITTLE

Covalent compounds > know the properties of covalent compounds and be able to use E.D.D and structural diagrams to show how they bond and the chemical formulas of each					
Properties: (S), (L), (G), LOW MELTING POINTS, NON-CONDUCTORS,					
Show how carbon and oxygen bond:	··				
0 0 c 0 0	.0—	·			
Nomenclature and Writing Chemical Formulas \rightarrow be familiar with the rules in naming and writing chemical formulas for binary ionic and molecular compounds as well as those including polyatomics					
$He_{(g)}$ = HELIUM GAS	$SO_{3(g)}$ = SULPHUR TRIOXIDE				
GaCl ₃ = GALIUM CHLORIDE	CoPO ₄ = COBALT(III)PHOSPHATE				
Tetracarbon octahydride = C_4H_8	nickel(III)chlorate = Ni(C	(IO ₃) ₃			
Chemical Reactions > recognize the different types of chemical equations (i.e. word and skeleton, and be able to go from one type to the other) and know the clues that indicate a chemical change (as opposed to a physical change) has occurred Balancing Equations > understand why equations must be balanced (The Law of Conservation of Mass) and know how to balance both skeleton and word equations Types of Reactions > be able to classify reactions as either synthesis, decomposition, single or double displacement and knowing this be able to predict the products formed, given the reactants; know how to use the activity series of metals or halogens for single displacement rxns					
Write the balanced chemical equation with states and then indicate the type of reaction:					
1. solid aluminum plus oxygen gas yields $_4_Al_{(s)} + _3_O_{2(g)} \rightarrow _2_Al_2O_{3 (s)}$		SYNTHESIS			
2. tetracarbon decahydride gas plus oxygen gas $_2$ $_2$ $_4$ H $_{10(g)}$ + $_1$ 3 $_2$ $_2$ 0 $_2$ (g) \rightarrow $_4$ 8 $_4$ $_4$ 0 $_2$ (g) + $_4$ 1	•	COMBUSTION			
3. solid lithium plus aqueous gold(III)nitrate yi $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}$		SINGLE DISPLACEMENT			
ł. aqueous phosphoric acid plus aqueous magnesium hydroxide yields _2_ H₃PO₄(aq) + _3_ Mg(OH)₂(aq) → Mg₃(PO₄)₂(aq) + _6_ H₂O(1) DOUBLE DISPLACEMENT					
i. solid ammonium chloride when heated produces gaseous nitrogen trihydride and aqueous hydrochloric acid					
$\underline{\qquad} NH_4Cl_{(s)} \to \underline{\qquad} NH_{3(g)} + \underline{\qquad} HCl_{(aq)}$		DECOMPOSITION			

Rates of Reactions -> know the 4 factors that affect the rates of reactions and how they effect it; also be able to explain how catalysts can affect the rates of reactions and why they are used						
4 factors: CONCENTRATION TEMPERATURE SURFACE AREA PRESSURE						
Catalysts: LOWER ACTIVATION COLLISIONS	I ENERGY AND HELP ALIGN MOLI	ECULES FOR MORE EFFECTIVE				
Acids and Bases→be familiar with: the properties of acids and bases; the various indicators (red and blue litmus paper, pH paper, phenolphthalein, bromothymol blue and cabbage juice) we used to test and the results of each in determining whether a substance is an acid or base; the difference between concentration and strength of acids and bases what determines each						
PROPERTY	ACIDS	BASES				
Litmus paper	BLUE TO RED	RED TO BLUE				
phenolphthalein	STAYS CLEAR	TURNS PINK				
Bromothymol Blue	TURNS YELLOW	STAYS BLUE				
Conductivity	YES	YES				
Taste	SOUR	BITTER				
Feel	NONE	SLIPPERY				
Reaction with carbonates	YES = $CO_{2(g)}$	NO				
pH of a concentrated acid = 0-3 pH of a concentrated base = 11-14 pH of a 2 is 10 000 000 × more concentrate than a pH of 9.						
Oxides \rightarrow understand what an oxide is and how different types are used to make acids & bases $\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Neutralization -> write a balanced equation of hydrosulphuric acid reacting barium hydroxide						

 $_{---}$ $H_2S_{(aq)} + _{---}$ $Ba(OH)_{2(aq)} \rightarrow _{---}$ $BaS_{(aq)} + _2 H_2O_{(l)}$