Oxides Worksheet | 1. | What is an oxide? Any | element chemical | ly combined with oxygen | |----------------------------------|---|---|--| | 2. | Metal oxides and water for water formaads | m <u>bases</u> a | and non-metal oxides and | | 3. Complete the following table: | | | | | | Element | Is the element a metal
or a non-metal? | Is the oxide solution dissolved in water, acidic or basic? | | | Sulfur | non-metal | acidic | | or . | Carbon | non-metal | acidic | | | Magnesium | metal | basic | | | Iron | metal | Masic | | 4. | 4. Use your conclusions in Question 2 to predict whether the oxide of each element below forms an acidic or basic solution. a) calcium basic d d) lithium acidic ocidic b) sulphur basic acidic e) nitrogen boshorus f) sodium garaka basic | | | | 5. | Write the correct formula for each oxide. a) carbon monoxide CO | | | | 6. | Write in words the products of the following reactions. Then write in the balanced chemical equations for each reaction below the word equation. a) nitrogen dioxide plus water produces hydrogen nitrate (nitric acid) . | | | | | _ NO2 + Z. | 4 Hr | 103 | | | b) lithium oxide plus water | produces Lithium | hydroxide. | | | L120 + | H2O -> ZLi | OH | | | c) magnesium oxide plus | water produce | esium hydroxide. | | | MgO + | H2O -> N | lg COH) _z | | | d) carbon dioxide plus wat | er produce Carhoni | c acid Chydrogen carbonate | | | | Hz O> | | ## Acids and Bases Worksheet - 7. Strength of acids and bases on the pH scale. - a) Base #1 has a pH of 9. Base #2 has a pH of 13. Which has the greater concentration of H⁺ ions? __#| __Which is more basic? __# Z___ How many more times basic is your choice? 104 or 10000 X - b) Lemon juice has a pH of 2. Vinegar has a pH of 5. Which has the greater concentration of H⁺ ions? Remarke Which is more acidic? I have many more times acidic is your choice? 103 or 1,000 x - 8. Neutralization of acids and bases. Write in the products for each of the following neutralization reactions and identify the salt produced. Balance the chemical equation. - (Salts) chloride a) $2 \text{ HCl (aq)} + Ca(OH)_2 (aq) \rightarrow 2 \frac{H_2O}{1}$ b) $H_2SO_4 (aq) + 2 \text{ LiOH (aq)} \rightarrow 2 \frac{H_2O}{2}$ c) $H_2CO_3 (aq) + 2 \text{ KOH (aq)} \rightarrow 2 \frac{H_2O}{2}$ - K2 (Oz potassium carbonate - d) $\frac{2}{4}$ H₃PO₄ (aq) + $\frac{3}{4}$ Ba(OH)₂ (aq) \Rightarrow $\frac{6}{4}$ e) HNO₃ (aq) + NaOH (aq) \Rightarrow _____ _ Baz (Pay), barium prosphate Na Noz sodium nitrate - You are required to make the salt CaSO₄ in the lab, but are given only the following chemicals: BaO CO₃ SO₄ SO₂ LiO₂ H₂O Use balanced chemical reactions to make the necessary acid and the base. You will then use a balanced chemical reaction to show how your acid and base can be used to make CaSO₄ Reaction 1 – Making the Acid: Reaction 2 – Making the Base: CaO + Reaction 3 - Making the Salt (neutralization reaction): - Ca(OH)2 (ag) + Hz SOy (ag) - 2 HzO (ag) + CaSOy(ag) ## **Acid and Base Worksheet** SNC 2DI Name: ANSWERS Goal • Check your understanding of acid and base terms and reinforce some of the concepts that relate to the strength of acids and bases. What to Do: Answer each question in the space provided. | Compare and contrast the following terms in (a) and (b). Define (c) (a) strong acid, weak acid (give an example of each) → completely ionizes in Solution i.e. HCl(44) → H | |--| | -> weak -> partially ionizes in solution i.e. CH3(00H C-> H5,+ CH3(0 | | (b) concentrated base, dilute base → 5 includes little H2O and a Argh low concentration of H | | > dilute -> contains much more H20 | | (c) percent ionization of an acid or a base The percentage of the acid or base that separates Into its ions when put into solution | | 2. What is the percent ionization in each solution below? (a) solution I: 10 out of 100 molecules of acid ionize → 10/100 = 0.1 × 100 / = 10 / 1 | | (b) solution 2: 500 out of 1000 molecules of acid ionize \rightarrow 500/1000 = 0.5 × 100 /. = 50 /. | | (c) solution 3: 100 out of 500 molecules of base ionize → 100/500 = 0.2 × 100 /. = 20 /. | | (d) solution 4: 3 out of 100 molecules of base ionize $\frac{3/100}{3} = 0.03 \times 100\% = 3\%$ | | 3. Based on your answers for question 2, answer the following questions. Assume that all the solutions are equally concentrated. | | (a) Which solution has the lowest pH (highest concentration of H ⁺)? → # 2 | | (b) Which solution has the highest pH (lowest concentration of H ⁺)? → #3 | | sulfuric acid. - Char, Colour less liquids | | | | |---|--|--|--| | > Keep phenothalein clear | | | | | (b) Name one qualitative property that is different for water and very concentrated sulfuric acid. Water > BTB stays blue acid-> BTB turns yellow | | | | | 5. (a) Write the equations that show the ionization of carbonic acid. It is a weak acid. $ \frac{H_2 GO_3}{G_3} = \frac{2}{2} + \frac{1}{2} \frac{1}$ | | | | | > because the solution alternates between the (2) sides of
the reaction. | | | | | (c) Why is carbonic acid a weak acid compared with hydrochloric acid? | | | | | > It partially ionizes while HCI completely ionizes in solution | | | |