Unit 2: Quantities in Chemistry

Section: 2.1-2.14
Pages 80-163

Mass, Moles, \& Molar Mass

Term	Definition
	Relative quantities of isotopes in a natural occurring element (\%)

E.g. Carbon has 2 isotopes $C-12$ and $C-13$. Of Carbon's two isotopes, there is 98.9% C-12 and 1.11% C-13. Find the average atomic mass of Carbon.

Term	Definition
	The mass of one molecule of an ionic compound in a.m.u.

E.g. Calculate the formula mass of CaCl_{2}.

The Mole

Term	Definition
	6.023×10^{23} entities
	The number of entities in one mole, $6.023 \times$ 10^{23}
	The mass, in grams, of one mole of a chemical entity

E.g. Calculate the molar mass of NaCl .

Figure 5
One mole of eggs would cover the entire surface of Earth to a depth of over 60 km .

Table 4 Grouping Entities: Moles of Water Molecules

Individual entities	$2 \mathrm{H}_{2(9)}+1 \mathrm{O}_{2(9)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{\mathbb{0}}$
Multiples of 6.02×10^{23}	$2\left(6.02 \times 10^{23} \mathrm{H}_{2(g)}+1\left(6.02 \times 10^{23}\right) \mathrm{O}_{2(9)} \rightarrow 2\left(6.02 \times 10^{23}\right) \mathrm{H}_{2} \mathrm{O}_{\mathbb{0}}\right.$
Multiples of a mole	$2 \mathrm{~mol} \mathrm{H}_{2(g)}+1 \mathrm{~mol} \mathrm{O}_{2(9)} \rightarrow 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{\mathbb{(})}$

Calculations Involving the Mole

Table 5 Quantity Symbols and Units

Symbol	Quantity	Unit
n	amount (in moles)	mol
m	mass	$\mathrm{mg}, \mathrm{g}, \mathrm{kg}$
M	molar mass	$\mathrm{g} / \mathrm{mol}$
N	number of entities	atoms, ions, formula units, molecules
N_{A}	Avogadro's constant, 6.03×10^{23}	-

E.g., Calculate the mass, in grams, of 2.00 moles of calcium atoms.
E.g. What amount of gold is in a 275.8 g nugget of pure gold? And how many atoms does this represent?

Calculations Involving the Mole Continued.

Calculate the mass of 1 mol of sodium hydrogen carbonate (baking soda), NaHCO_{3}.

Sodium fluoride is added to toothpaste and tap water to prevent tooth decay. Calculate the mass of 2.00 mol of sodium fluoride, $\mathrm{NaF}_{(\mathrm{s})}$

How many water molecules are in a 25.0 g sample of water, $\mathrm{H}_{2} \mathrm{O}_{(1)}$?

Determining Empirical Formulas

Term	Definition
	A compound contains elements in certain fixed proportions. E.g. $\mathrm{NaCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
	The percentage, by mass, of each element in a compound.
	A formula that gives the lowest ratio of the atoms in a compound

The percentage composition of a compound was found to be 69.9% iron and 30.1% oxygen. What is the empirical formula of the compound.
Step 1: Percent to Mass: Calculate Mass (m) of each element in a 100 g sample. "Assume a 1 mol sample"

Step 2: Mass to Mole: Convert Mass (m) into Amount in moles (n)

Step 3: Divide by Small: Divide ALL mole answers in step 2 by smallest value.

Step 4: Multiply 'til whole: If any answer in step 3 ends with a .5, then multiply all answers in step 3 by " 2 "

Determining Molecular Formulas

Term	Definition
	A formula that indicates the actual number of atoms in one molecule of a compound.

The empirical formula of a compound is $\mathrm{CH}_{3} \mathrm{O}$, and its molar mass is $93.12 \mathrm{~g} / \mathrm{mol}$ (determined by a mass spectrometer). What is the molecular formula of the compound?

Step 1: List given values.

Step 2: Determine Molar Mass of the Empirical Formula.

Step 3: Determine the multiple. A ratio of the Molar Mass of Compound to Molar Mass of Empirical Formula.

Step 4: Calculate Molecular Formula. Apply the multiple to all subscript numbers in the EF.

Determining Percent Composition

Calculate the percentage composition of potassium sulfate, $\mathrm{K}_{2} \mathrm{SO}_{4}$.
Step 1: If given a formula only, you must "Assume a 1 mol sample".

Step 2: Calculate the Total Mass of Each Element in the Compound.

Step 3: Calculate Molecular Mass (or formula unit mass) of Compound.

Step 4: Calculate Percentage Composition by Mass of Compound.

\% Concentration V/V, M/V

Term	Definition
	Measurement of a quantity of a chemical entity.
	A ratio of the quantity of solute in a solution.

(a) dilute solution

(b) concentrated solution
$c_{\text {solution }}=\frac{v_{\text {solute }}}{v_{\text {solution }}} \times 100 \%$
where $c_{\text {solution }}$ is the concentration of the solution $v_{\text {solute }}$ is the volume of solute in the solution
$v_{\text {solution }}$ is the volume of the solution
For weight by volume (W/V) concentrations,

$$
c_{\text {solution }}=\frac{m_{\text {solute }}}{v_{\text {solution }}} \times 100 \%
$$

where $c_{\text {solution }}$ is the concentration of the solution
$m_{\text {solute }}$ is the mass of solute in the solution
$v_{\text {solution }}$ is the volume of the solution

A salt solution is formed by mixing 2.80 g of $\mathrm{NaCl}_{(\mathrm{s})}$, in enough water to make exactly 250 mL of solution. What is the W / V percentage concentration of sodium chloride salt solution?

Step 1: List Given Values.

Step 2: Write Percentage Concentration Equation, Substitute Values, \& Solve.

Molar Concentration

C - is the molar concentration in mol/L.
n - is the amount of solute in moles.
V - is the volume of the solution in L.

A sodium hydroxide solution contains 0.186 mol of sodium hydroxide in 0.250 L of solution. Calculate the molar concentration of the sodium hydroxide solution.
Step 1: List Given Values.

Step 2: Write Molar Concentration Equation, Substitute Values, \& Solve.

Parts Per Million

Term	Definition
	Concentration unit that is used for very low concentrations; one part solute for every million parts of solvent.

$1 \mathrm{ppm}=$ approximately 1 drop in a full bathtub
1 ppb $=$ approximately 1 drop in a full swimming pool
1 ppt $=$ approximately 1 drop in 1000 swimming pools

In a chemical analysis 2.2 mg of oxygen was measured in 250 mL of pond water. What is the concentration of oxygen in ppm?

Step 1: List Given Values.

Step 2: Write Percentage Composition Equation.

Step 3: Substitute Values into Equation and Solve.

Concentrations of Solutions Summary!

SUMMARY

Concentration of a Solution Equations

Type
percentage $\mathrm{V} / \mathrm{V} \quad c=\frac{v_{\text {solute }}}{v_{\text {solution }}} \times 100 \%$
percentage W/V

$$
c=\frac{m_{\text {solute }}}{v_{\text {solution }}} \times 100 \%
$$

$$
c=\frac{m_{\text {solute }}}{v_{\text {solution }}} \times 100 \%
$$

molar

$$
c=\frac{n_{\text {solute }}}{v_{\text {solution }}} \times 100 \%
$$

Units
\% V/V
\% W/V

$$
\mathrm{mg} / \mathrm{L}=\mathrm{ppm}
$$

$\mu g / \mathrm{L}=\mathrm{ppb}$
$\mathrm{ng} / \mathrm{L}=\mathrm{ppt}$

$$
\mathrm{mol} / \mathrm{L}
$$

Diluting Aqueous Solutions

Term	Definition
	The process of decreasing the concentration of a solution by adding more solvent.

$6 \% \mathrm{H}_{2} \mathrm{O}_{2}$

$3 \% \mathrm{H}_{2} \mathrm{O}_{2}$
C_{1} - initial concentration $C_{1} V_{1}=C_{2} V_{2} \quad C_{2}$-final concentration V_{1} - initial volume
V_{2} - final volume
Calculate the final volume of a hydrogen peroxide solution if water is added to a 100 mL of $6 \% \mathrm{~V} / \mathrm{V}$ hydrogen peroxide solution until it reaches a volume of 250 mL .
Step 1: List Given Values.

Step 2: Write Dilution Equation.

Step 3: Isolate Unknown Value on Left-Hand Side.

Step 4: Substitute Values in \& Solve .

Stoichiometry

Term	Definition
	The ratio of amount, in moles, of reactants and products in a chemical reaction.
	Mathematical procedures for calculating the quantities of reactants and products involved in chemical reactions.

Propane, $\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}$, is a gas that is commonly used in barbecues. Calculate the mass of oxygen that is required to burn 15.0 g of propane.

Step 1: Balance Equation, List Given Values and Molar Masses.

Step 2: Convert Mass of a Given Substance to an Amount (moles).

Step 3: Convert Amount of a Given Substance to Amount Required of a Given Substance using a MOLAR RATIO.

Step 4: Convert Amount of Required Substance to Required Value.

Step 5: Write a therefore statement that answers the question.

Summary of Stoichiometry!

| 에IIIIT|

Limiting \& Excess Reagents

Term	Definition
	The reactant that is totally consumed in a chemical reaction.
	The reactant that is present in more than the required amount in a chemical reaction.

Table salt, $\mathrm{NaCl}_{(s)}$, can be formed by the reaction of sodium metal with chlorine gas:

$$
2 \mathrm{Na}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NaCl}_{(\mathrm{s})}
$$

A reaction mixture contains 45.98 g of sodium and 142.0 g of chlorine. Calculate the mass of sodium chloride that is produced.
Step 1: Balance equation, List Given Values and Molar Masses.

Step 2x2: Convert Mass of a Given Substance to moles.

Step 3x2: Convert Amount of a Given Substance to Amount Required of a Given Substance using a MOLAR RATIO.

Step 5: Calculate the Amount of Product.

Step 6: Calculate the Mass of Product.

Term	Definition
	The amount of product produced in a chemical reaction.
	The amount of product that is actually produced in a chemical reaction.
	The amount of product expected from a balanced chemical equation.
	Actual vs. Theoretical Yield expressed as a percentage of Theoretical Yield.

The most common ore of Arsenic is $\mathrm{FeSAs}_{(s)}$, can be heated to produce Arsenic, $A s_{(s)}$:

$$
\mathrm{FeSAs}_{(s)} \longrightarrow \mathrm{FeS}_{(s)}+\mathrm{As}_{(s)}
$$

When 250 kg of this ore was processed industrially, 95.3 kg of Arsenic was obtained. Calculate the percent yield of Arsenic.
Step 1: Balance Equation, List Values \& Molar Masses.

Step 2: Convert Mass of Given Substance to Amount of Substance (n)

Step 3: Convert Amount of Substance to Amount of Required Sub.

Step 4: Convert Amount of Required Sub to Mass of Req. Sub.

