Unit 2: Quantities in Chemistry

Section: 2.1 - 2.14

Pages 80-163

Mass, Moles, & Molar Mass

Term	Definition
	Relative quantities of isotopes in a natural occurring element (%)

E.g. Carbon has 2 isotopes C-12 and C-13. Of Carbon's two isotopes, there is 98.9% C-12 and 1.11% C-13. Find the average atomic mass of Carbon.

Term	Definition	
	The mass of one molecule of an ionic compound in a.m.u.	

E.g. Calculate the formula mass of $CaCl_2$.

The Mole

Term	Definition	
	6.023×10^{23} entities	
	The number of entities in one mole, 6.023×10^{23}	
	The mass, in grams, of one mole of a chemical entity	

E.g. Calculate the molar mass of NaCl.

Figure 5
One mole of eggs would cover the entire surface of Earth to a depth of over 60 km.

Table 4 Grouping Entities: Moles of Water Molecules

Individual entities	$^{2} H_{2(g)} + ^{1} O_{2(g)} \rightarrow ^{2} H_{2} O_{(f)}$
Multiples of 6.02 × 10 ²³	2 (6.02 × 10 ²³) $H_{2(g)}$ + 1 (6.02 × 10 ²³) $O_{2(g)}$ → 2 (6.02 × 10 ²³) $H_2O_{(f)}$
Multiples of a mole	2 mol $H_{2(g)}$ + 1 mol $O_{2(g)} \rightarrow ^{2}$ mol $H_{2}O_{(f)}$

Calculations Involving the Mole

Table 5 Quantity Symbols and Units

Symbol	Quantity	Unit
n	amount (in moles)	mol
m	mass	mg, g, kg
М	molar mass	g/mol
Ν	number of entities	atoms, ions, formula units, molecules
N _A	Avogadro's constant, $6.03 imes 10^{23}$	-

E.g., Calculate the mass, in grams, of 2.00 moles of calcium atoms.

E.g. What amount of gold is in a 275.8g nugget of pure gold? And how many atoms does this represent?

Calculations Involving the Mole Continued.

Calculate the mass of	of 1 mol c	of sodium	hydrogen	carbonate	(baking
soda), NaHCO3.			, ,		

Sodium fluoride is added to toothpaste and tap water to prevent tooth decay. Calculate the mass of 2.00 mol of sodium fluoride, $NaF_{(s)}$

How many water molecules are in a 25.0g sample of water, $H_2O_{(1)}$?

Determining Empirical Formulas

Term	Definition
	A compound contains elements in certain fixed proportions. E.g. NaCl, H_2O , $C_6H_{12}O_6$
	The percentage, by mass, of each element in a compound.
	A formula that gives the lowest ratio of the atoms in a compound

The percentage composition of a compound was found to be 69.9% iron and 30.1% oxygen. What is the empirical formula of the compound.

Step 1: Percent to Mass: Calculate Mass (m) of each element in a 100 g sample. "Assume a 1 mol sample"

Step 2: Mass to Mole: Convert Mass (m) into Amount in moles (n)

Step 3: Divide by Small: Divide ALL mole answers in step 2 by smallest value.

Step 4: Multiply 'til whole: If any answer in step 3 ends with a .5, then multiply all answers in step 3 by "2"

<u>Determining Molecular Formulas</u>

Term	Definition
	A formula that indicates the actual number of atoms in one molecule of a compound.

The empirical formula of a compound is CH_3O , and its molar mass is 93.12 g/mol (determined by a mass spectrometer). What is the molecular formula of the compound?

Step 1: List given values.

Step 2: Determine Molar Mass of the Empirical Formula.

Step 3: Determine the multiple. A ratio of the Molar Mass of Compound to Molar Mass of Empirical Formula.

Step 4: Calculate Molecular Formula. Apply the multiple to all subscript numbers in the EF.

Determining Percent Composition

Calculate the percentage composition of potassium sulfate, K2SO4.

Step 1: If given a formula only, you must "Assume a 1 mol sample".

Step 2: Calculate the Total Mass of Each Element in the Compound.

Step 3: Calculate Molecular Mass (or formula unit mass) of Compound.

Step 4: Calculate Percentage Composition by Mass of Compound.

% Concentration V/V, M/V

Term	Definition
	Measurement of a quantity of a chemical entity.
	A ratio of the quantity of solute in a solution.

$$c_{\rm solution} = \frac{\textit{V}_{\rm solute}}{\textit{V}_{\rm solution}} \times 100\%$$

where c_{solution} is the concentration of the solution v_{solute} is the volume of solute in the solution v_{solution} is the volume of the solution

For weight by volume (W/V) concentrations,

$$c_{\rm solution} = \frac{m_{\rm solute}}{v_{\rm solution}} \times 100\%$$

where $c_{
m solution}$ is the concentration of the solution $m_{
m solute}$ is the mass of solute in the solution $v_{
m solution}$ is the volume of the solution

A salt solution is formed by mixing 2.80 g of $NaCl_{(s)}$, in enough water to make exactly 250 mL of solution. What is the W/V percentage concentration of sodium chloride salt solution?

Step 1: List Given Values.

Step 2: Write Percentage Concentration Equation, Substitute Values, & Solve.

Molar Concentration

C - is the molar concentration in mol/L.

n - is the amount of solute in moles.

V - is the volume of the solution in L.

A sodium hydroxide solution contains 0.186 mol of sodium hydroxide in 0.250 L of solution. Calculate the molar concentration of the sodium hydroxide solution.

Step 1: List Given Values.

Step 2: Write Molar Concentration Equation, Substitute Values, & Solve.

Parts Per Million

Term	Definition
	Concentration unit that is used for very low concentrations; one part solute for every million parts of solvent.

1 ppm = approximately 1 drop in a full bathtub 1 ppb = approximately 1 drop in a full swimming pool 1 ppt = approximately 1 drop in 1000 swimming pools

In a chemical analysis 2.2 mg of oxygen was measured in 250 mL of pond water. What is the concentration of oxygen in ppm?

Step 1: List Given Values.

Step 2: Write Percentage Composition Equation.

Step 3: Substitute Values into Equation and Solve.

Concentrations of Solutions Summary!

SUMMARY

Concentration of a Solution Equations

Type	Equation	Units
percentage V/V	$c = \frac{v_{\rm solute}}{v_{\rm solution}} \times 100\%$	% V/V
percentage W/V	$c = \frac{m_{\rm solute}}{v_{\rm solution}} \times 100\%$	% W/V
very low (number)	$c = \frac{m_{\rm solute}}{v_{\rm solution}} \times 100\%$	mg/L = ppm μg/L = ppb ng/L = ppt
molar	$c = \frac{n_{\rm solute}}{v_{\rm solution}} \times 100\%$	mol/L

Diluting Aqueous Solutions

Term	Definition
	The process of decreasing the concentration of a solution by adding more solvent.

$$C_1$$
 - initial concentration $C_1V_1 = C_2V_2$ C_2 - final concentration

$$V_1$$
 - initial volume V_2 - final volume

Calculate the final volume of a hydrogen peroxide solution if water is added to a 100 mL of 6% V/V hydrogen peroxide solution until it reaches a volume of 250 mL.

Step 1: List Given Values.

Step 2: Write Dilution Equation.

Step 3: Isolate Unknown Value on Left-Hand Side.

Step 4: Substitute Values in & Solve.

Stoichiometry

Term	Definition
	The ratio of amount, in moles, of reactants and products in a chemical reaction.
	Mathematical procedures for calculating the quantities of reactants and products involved in chemical reactions.

Propane, $C_3H_{8(g)}$, is a gas that is commonly used in barbecues. Calculate the mass of oxygen that is required to burn 15.0 g of propane.

Step 1: Balance Equation, List Given Values and Molar Masses.

Step 2: Convert Mass of a Given Substance to an Amount (moles).

Step 3: Convert Amount of a Given Substance to Amount Required of a Given Substance using a MOLAR RATIO.

Step 4: Convert Amount of Required Substance to Required Value.

Step 5: Write a therefore statement that answers the question.

Summary of Stoichiometry!

Figure 1 summarizes the steps in a stoichiometric calculation

Limiting & Excess Reagents

Term	Definition
	The reactant that is totally consumed in a chemical reaction.
	The reactant that is present in more than the required amount in a chemical reaction.

Table salt, $NaCl_{(s)}$, can be formed by the reaction of sodium metal with chlorine gas:

$$2Na_{(s)} + Cl_{2(q)} \longrightarrow 2NaCl_{(s)}$$

A reaction mixture contains 45.98 g of sodium and 142. O g of chlorine. Calculate the mass of sodium chloride that is produced.

Step 1: Balance equation, List Given Values and Molar Masses.

Step 2x2: Convert Mass of a Given Substance to moles.

Step 3x2: Convert Amount of a Given Substance to Amount Required of a Given Substance using a MOLAR RATIO.

Step 5: Calculate the Amount of Product.

Step 6: Calculate the Mass of Product.

Percentage Yield percentage yield = actual yield theoretical yield

Term	Definition
	The amount of product produced in a chemical reaction.
	The amount of product that is actually produced in a chemical reaction.
	The amount of product expected from a balanced chemical equation.
	Actual vs. Theoretical Yield expressed as a percentage of Theoretical Yield.

The most common ore of Arsenic is $FeSAs_{(s)}$, can be heated to produce Arsenic, $As_{(s)}$:

$$FeSAs_{(s)} \longrightarrow FeS_{(s)} + As_{(s)}$$

When 250 kg of this ore was processed industrially, 95.3 kg of Arsenic was obtained. Calculate the percent yield of Arsenic.

Step 1: Balance Equation, List Values & Molar Masses.

Step 2: Convert Mass of Given Substance to Amount of Substance (n)

Step 3: Convert Amount of Substance to Amount of Required Sub.

Step 4: Convert Amount of Required Sub to Mass of Req. Sub.

Step 5: Calculate Percent Yield.