Grade 12 College Chemistry - SCH 4CI PRACTICE EXAM

The following information may be useful:

Part A: Multiple Choice/True or False - 40 Marks
Circle the best possible answer on this page and then transfer onto the scantron card provided.

1. Which of the following is an inference?
(a) The chalk's texture is smooth.
(b) The temperature decreased because ice was added
(c) The gum tastes sweet.
(d) Black flakes were produced when heated.
2. Which is a quantitative observation?
(a) 5 mL of gas formed.
(b) The aluminium foil is lustrous.
(c) The gum is pink.
(d) A yellow precipitate formed.
3. A cation is:
(a) a neutral particle.
(b) a negatively charged particle.
(c) a positively charged particle.
(d) another term for an atom.
4. Which is a chemical change?
(a) grinding a solid into a powder
(b) a candle burning
(c) dissolving sugar into water
(d) ice melting
5.

The above WHMIS symbol identifies:
(a) materials causing immediate toxic effects.
(b) materials causing other toxic effects.
(c) biohazardous infectious materials.
(d) corrosive materials.
6. A magnesium atom will \qquad to form its ion which has the formula: \qquad _.
(a) lose two electrons; Mg^{2+}
(b) lose one electron; Mg^{1+}
(c) gain one electron; Mg^{1-}
(d) gain two electrons; Mg^{2}
7. Who discovered the proton?
(a) Rutherford
(b) Thomson
(c) Bachwas added.
(d) Democritus
8. The "Billiard Ball" model of atoms was proposed by:
(a) Thomson.
(b) Rutherford.
(c) Bohr.
(d) Dalton.
9. Outside the nucleus contains:
(a) protons only.
(b) neutrons only.
(c) electrons only.
(d) protons and neutrons.
10. Potassium, $K_{(s)}$, produces a flame that is:
(a) red.
(b) green-blue.
(c) red-orange.
(d) purple (violet).
11. A fluorine ion has:
(a) 9 protons, 10 neutrons and 9 electrons.
(b) 9 protons, 11 neutrons and 10 electrons.
(c) 9 protons, 10 neutrons and 10 electrons.
(d) 10 protons, 20 neutrons and 9 electrons.
12. An ionic bond is formed between:
(a) two metals.
(b) a metal \& non-metal.
(c) two non-metals
(d) none of these
13. A substance dissolved in water has a state of
(a) gas
(b) aqueous
(c) precipitate.
(d) sublimate.
14. A solution which contains less than the maximum amount of solute is said to be:
(a) saturated.
(b) supersaturated.
(c) unsaturated.
(d) concentrated.
15. To dissolve a solid more easily in a liquid, you should:
(a) cool the solution.
(b) heat the solution.
(c) stir the solution.
(d) both (b) and (c).
16. If you are making hot chocolate, the powder is the
\qquad and the milk is the ___.
(a) solution; solute.
(b) solute; solvent.
(c) solvent; solute.
(d) none of the above
17. The following is an example of a \qquad
reaction. $\quad \mathrm{Zn}_{(\mathrm{s})}+\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$
(a) decomposition
(b) synthesis
(c) single displacement
(d) double displacement
18. When sodium bicarbonate is heated sodium carbonate, water and carbon dioxide is made.

$$
2 \mathrm{NaHCO}_{3(\mathrm{~s})} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

This is an example of a \qquad reaction.
(a) decomposition
(b) synthesis
(c) single displacement
(d) double disp.
19. The amount of atoms in one mole is
(a) 6.02×10^{23} atoms.
(c) 3.01×10^{23} atoms
(b) 1 molecule
(d) 1.0×10^{1} molecules
20. The formula for aluminium bromide is:
(a) AlBr
(b) $\mathrm{Al}_{3} \mathrm{Br}$
(c) AlBr_{3}
(d) AlB_{3}
21. The term given for the "mass of one mole" of a substance is:
(a) elemental mass.
(b) substance mass.
(c) given mass.
(d) molar mass.
22. Which symbol is used for the \# of moles?
(a) m
(b) M
(c) n
(d) C
23. If 24 g of carbon react with 64 g of oxygen according to the following reaction, what mass of carbon dioxide is produced?

$$
C_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}
$$

(a) 649
(b) 449
(c) 24 g (d) 88 g
24. To calculate the volume of a solution you must:
(a) divide n by c.
(b) multiply n by C.
(c) divide m by n.
(d) multiply m by n.
25. What is the molar mass of CH_{4} ?
(a) $4.04 \mathrm{~g} / \mathrm{mol}$
(b) $16.05 \mathrm{~g} / \mathrm{mol}$
(c) $18.02 \mathrm{~g} / \mathrm{mol}$
(d) $12.01 \mathrm{~g} / \mathrm{mol}$
26. To calculate the number of atoms in 2 moles of $\mathrm{H}_{2} \mathrm{O}$, you must...
(a) divide Avogadro's number by 2.
(b) multiply Avogadro's number by 6.
(c) multiply Avogadro's number by 2.
(d) multiply 6.023×10^{23} by 2 .
27. The simplest ketone is:
(a) ethanone.
(b) propanone.
(c) methanone.
(d) butanone.
28. During an experiment, an SCH 4CI student actually obtains 7.47 g of a product. The theoretical yield is 7.76 g . What is the percent yield of this product?
(a) 0.963%
(b) 0.00963%
(c) 9.63%
(d) 96.3%
29. Alkynes contain:
(a) single $C-C$ bonds only.
(b) double $C=C$ bonds only.
(c) triple $C \equiv C$ bonds only.
(d) single $C-C$ and double $C=C$ bonds.
30. All alkanes should end in:
(a) ene
(b) yne
(c) ane
(d) ane or ene
31. The general formula for an alkane is
(a) $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}+2}$
(b) $\mathrm{C}_{n} \mathrm{H}_{2 n}$
(c) $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$
(d) $\mathrm{C}_{n} \mathrm{H}_{2 n+1}$
32. Which of the following side groups should be written first when naming an organic compound?
(a) methyl
(b) ethyl
(c) propyl
(d) butyl
33. The process where alcohols are reacted with carboxylic acids is called:
(a) cracking.
(b) esterification.
(c) reforming.
(d) addition.
34. During reduction:
(a) there is a gain of electrons.
(b) there is a loss of electrons.
(c) electrons may be gained or lost.
(d) None of the above are correct.
35. Which of the following will speed up the rate of corrosion?
(a) painting the metal
(b) cathodic protection
(c) galvanizing the metal
(d) adding salt to the metal's environment
36. Oxidation involves the gain of electrons.
(a) True
(b) False
37. When a base is dropped onto blue litmus paper,
(a) the colour of the litmus does not change.
(b) the blue colour changes to red.
(c) the blue colour intensifies.

(d) none of the above.

38. A solution with a pH of 6.8 is
(a) slightly acidic.
(b) strongly acidic.
(c) slightly basic.
(d) strongly basic.
39. A base has a pH less than 7 .
(a) True
(b) False
40. An acid with a pH of 3 is $100 \times$ more acidic than an acid with a pH of 5 .
(a) True
(b) False

Answer all of the questions in the space provided.
41. Draw a Bohr-Rutherford diagram for an oxygen ion, O^{-2} [/5]

42. Complete the following chart. [

43. Ammonia, $\mathrm{NH}_{3(\mathrm{~g})}$, is made during the Haber process by combining 5.00 g of nitrogen gass, $\mathrm{N}_{2(\mathrm{~g})}$, with hydrogen gas, $\mathrm{H}_{2(\mathrm{~g})}$. Calculate how much hydrogen is needed, in grams. [8]

$$
\begin{aligned}
& \underset{m=500}{r} \mathrm{~N}_{2(g)}+\underset{m=?}{3} \mathrm{H}_{2(g)} \rightarrow{ }_{-}^{2} \mathrm{NH}_{3(g)} \\
& \checkmark n=\frac{m}{M} \quad \checkmark \frac{1 \mathrm{molN}_{2}}{0.179 \mathrm{~mol}}=\frac{3 \mathrm{molH}_{2}}{x} \\
& n=\frac{5.00 \mathrm{~g}}{28.0 \mathrm{~g} / \mathrm{mol}} \quad \checkmark x=0.537 \mathrm{~mol} \mathrm{H}_{2} \\
& \checkmark n=0.179 \mathrm{~mol} \mathrm{~N}_{2} \\
& \checkmark m=n M \\
& m=(0.537 \mathrm{~mol})(2.02 \mathrm{~g} / \mathrm{mol}) \\
& \checkmark m=1.08 \mathrm{~g} \text { of } \mathrm{H}_{2}
\end{aligned}
$$

\checkmark Therefore 1.08 g of $\mathrm{H}_{2(\mathrm{~g})}$ is needed.
44. IDENTIFY the family (alkane, alkene, alkyne, aromatics, alcohol, ether, aldehyde, ketone, carboxylic acid, ester, amine, amide, polymer) and NAME the following molecules

| Structural Diagram | Family | Name |
| :--- | :--- | :--- | :--- | :--- |
| a. | alkane | 2-methylbutane |
| | | aldehyde |

45. The concentration of sulphuric acid can be analyzed by titration with hydroxide solution. Three 10.0 mL samples of sulphuric acid are titrated with a standardized $0.200 \mathrm{~mol} / \mathrm{L}$ solution of potassium hydroxide. The results for the three trials are shown in the table below. What is the concentration of sulphuric acid? [/8]

Trial	1	2	3	Average
Final burette reading	13.85 mL	26.95 mL	39.85 mL	
Initial burette reading	0.70 mL	13.90 mL	26.90 mL	
Volume of kOH added	13.15	13.05	12.95	13.05

\qquad $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\ldots 2$ _ $\mathrm{KOH}_{(\mathrm{aq})} \rightarrow$ \qquad $\mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{aq})}+{ }_{2}{ }_{-} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
$C=0.200 \mathrm{M}$
$V=0.01305 L$
$\mathrm{V}=0.010 \mathrm{~L}$
$\checkmark n_{\mathrm{KOH}}=C V$
$=(0.200)(0.010)$
$\checkmark x=0.001 \mathrm{~mol}$
$\checkmark=0.002 \mathrm{~mol} \mathrm{KOH}$

$$
\begin{aligned}
\checkmark C_{H_{2} \mathrm{SO}_{4}} & =\frac{n}{V} \\
& =\frac{0.001}{0.01305} \\
\checkmark & =0.077 \mathrm{M}
\end{aligned}
$$

\checkmark Therefore, the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.077 M

